You are here

Regulatory Network

A gene (or genetic) regulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the gene expression levels of mRNA and proteins. These play a central role in morphogenesis, the creation of body structures, which in turn is central to evolutionary developmental biology (evo-devo). [Source: Wikipedia]

T-REX

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Non-coding microRNAs (miRNAs) act as regulators of global protein output. While their major effect is on protein levels of target genes, it has been proven that they also specifically impact on the messenger RNA level of targets. Prominent interest in miRNAs strongly motivates the need for increasing the options available to detect their cellular activity.

Rating: 
Average: 5 (1 vote)

CSCdb

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Cancer stem cells (CSCs), which have the ability to self-renew and differentiate into various tumor cell types, are a special class of tumor cells. Characterizing the genes involved in CSCs regulation is fundamental to understand the mechanisms underlying the biological process and develop treatment methods for tumor therapy. Recently, much effort has been expended in the study of CSCs and a large amount of data has been generated. However, to the best of our knowledge, database dedicated to CSCs is not available until now.

Rating: 
5
Average: 4.5 (2 votes)

IBRel

Submitted by ChenLiang on Thu, 04/06/2017 - 17:55

Many biomedical relation extraction approaches are based on supervised machine learning, requiring an annotated corpus. Distant supervision aims at training a classifier by combining a knowledge base with a corpus, reducing the amount of manual effort necessary. This is particularly useful for biomedicine because many databases and ontologies have been made available for many biological processes, while the availability of annotated corpora is still limited. We studied the extraction of microRNA-gene relations from text.

Rating: 
Average: 5 (1 vote)

PAGER

Submitted by ChenLiang on Tue, 01/09/2018 - 18:55

Integrative Gene-set, Network and Pathway Analysis (GNPA) is a powerful data analysis approach developed to help interpret high-throughput omics data. In PAGER 1.0, we demonstrated that researchers can gain unbiased and reproducible biological insights with the introduction of PAGs (Pathways, Annotated-lists and Gene-signatures) as the basic data representation elements.

Rating: 
Average: 5 (1 vote)

COGERE

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Understanding how regulatory networks globally coordinate the response of a cell to changing conditions, such as perturbations by shifting environments, is an elementary challenge in systems biology which has yet to be met. Genome-wide gene expression measurements are high dimensional as these are reflecting the condition-specific interplay of thousands of cellular components.

Rating: 
Average: 5 (1 vote)

TMMN

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Molecular networks are the basis of biological processes. Such networks can be decomposed into smaller modules, also known as network motifs. These motifs show interesting dynamical behaviors, in which co-operativity effects between the motif components play a critical role in human diseases. We have developed a motif-searching algorithm, which is able to identify common motif types from the cancer networks and signal transduction networks (STNs).

Rating: 
Average: 5 (1 vote)

MITHrIL

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Prediction of phenotypes from high-dimensional data is a crucial task in precision biology and medicine. Many technologies employ genomic biomarkers to characterize phenotypes. However, such elements are not sufficient to explain the underlying biology. To improve this, pathway analysis techniques have been proposed. Nevertheless, such methods have shown lack of accuracy in phenotypes classification.

Rating: 
5
Average: 4.5 (2 votes)

icTAIR

Submitted by ChenLiang on Thu, 04/06/2017 - 17:57

Gene expression regulators, such as transcription factors (TFs) and microRNAs (miRNAs), have varying regulatory targets based on the tissue and physiological state (context) within which they are expressed. While the emergence of regulator-characterizing experiments has inferred the target genes of many regulators across many contexts, methods for transferring regulator target genes across contexts are lacking. Further, regulator target gene lists frequently are not curated or have permissive inclusion criteria, impairing their use.

Rating: 
Average: 5 (1 vote)

ARN (Adipogenesis)

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Adipogenesis is the process of cell differentiation by which mesenchymal stem cells become adipocytes. Extensive research is ongoing to identify genes, their protein products, and microRNAs that correlate with fat cell development. The existing databases have focused on certain types of regulatory factors and interactions. However, there is no relationship between the results of the experimental studies on adipogenesis and these databases because of the lack of an information center.

Rating: 
5
Average: 4.5 (2 votes)

FARE-CAFE

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Chromosomal translocation (CT) is of enormous clinical interest because this disorder is associated with various major solid tumors and leukemia. A tumor-specific fusion gene event may occur when a translocation joins two separate genes. Currently, various CT databases provide information about fusion genes and their genomic elements. However, no database of the roles of fusion genes, in terms of essential functional and regulatory elements in oncogenesis, is available.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Regulatory Network