You are here

Regulatory Network

A gene (or genetic) regulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the gene expression levels of mRNA and proteins. These play a central role in morphogenesis, the creation of body structures, which in turn is central to evolutionary developmental biology (evo-devo). [Source: Wikipedia]

SignaFish

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Understanding living systems requires an in-depth knowledge of the signaling networks that drive cellular homeostasis, regulate intercellular communication, and contribute to cell fates during development. Several resources exist to provide high-throughput data sets or manually curated interaction information from human or invertebrate model organisms. We previously developed SignaLink, a uniformly curated, multi-layered signaling resource containing information for human and for the model organisms nematode Caenorhabditis elegans and fruit fly Drosophila melanogaster.

Rating: 
Average: 5 (1 vote)

CR2Cancer

Submitted by ChenLiang on Tue, 01/09/2018 - 17:43

Chromatin regulators (CRs) can dynamically modulate chromatin architecture to epigenetically regulate gene expression in response to intrinsic and extrinsic signalling cues. Somatic alterations or misexpression of CRs might reprogram the epigenomic landscape of chromatin, which in turn lead to a wide range of common diseases, notably cancer. Here, we present CR2Cancer, a comprehensive annotation and visualization database for CRs in human cancer constructed by high throughput data analysis and literature mining.

Rating: 
Average: 5 (1 vote)

Director

Submitted by ChenLiang on Tue, 01/09/2018 - 17:47

High-throughput measurement technologies have triggered a rise in large-scale cancer studies containing multiple levels of molecular data. While there are a number of efficient methods to analyze individual data types, there are far less that enhance data interpretation after analysis. We present the R package Director, a dynamic visualization approach to linking and interrogating multiple levels of molecular data after analysis for clinically meaningful, actionable insights.

Rating: 
5
Average: 4.5 (2 votes)

DPMIND

Submitted by ChenLiang on Tue, 01/09/2018 - 17:48

MicroRNAs (miRNAs) play essential roles in plant growth, development and stress responses through post-transcriptionally regulating the expression levels of their target mRNAs. Although some tools and databases were developed for predicting the relationships between miRNAs and their targets (miR-Tar), most of them were dependent on computational methods without experimental validations. With development of degradome sequencing techniques, researchers can identify potential interactions based on degradome sequencing data.

Rating: 
Average: 5 (1 vote)

PGnet

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Current outcome predictors based on "molecular profiling" rely on gene lists selected without consideration for their molecular mechanisms. This study was designed to demonstrate that we could learn about genes related to a specific mechanism and further use this knowledge to predict outcome in patients - a paradigm shift towards accurate "mechanism-anchored profiling". We propose a novel algorithm, PGnet, which predicts a tripartite mechanism-anchored network associated to epigenetic regulation consisting of phenotypes, genes and mechanisms.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Regulatory Network