You are here

Regulatory Network

A gene (or genetic) regulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the gene expression levels of mRNA and proteins. These play a central role in morphogenesis, the creation of body structures, which in turn is central to evolutionary developmental biology (evo-devo). [Source: Wikipedia]

GO-Elite

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

We introduce GO-Elite, a flexible and powerful pathway analysis tool for a wide array of species, identifiers (IDs), pathways, ontologies and gene sets. In addition to the Gene Ontology (GO), GO-Elite allows the user to perform over-representation analysis on any structured ontology annotations, pathway database or biological IDs (e.g. gene, protein or metabolite). GO-Elite exploits the structured nature of biological ontologies to report a minimal set of non-overlapping terms. The results can be visualized on WikiPathways or as networks.

Rating: 
Average: 5 (1 vote)

CoMoFinder

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Interplays between transcription factors (TFs) and microRNAs (miRNAs) in gene regulation are implicated in various physiological processes. It is thus important to identify biologically meaningful network motifs involving both types of regulators to understand the key co-regulatory mechanisms underlying the cellular identity and function. However, existing motif finders do not scale well for large networks and are not designed specifically for co-regulatory networks.

Rating: 
Average: 5 (1 vote)

GenoSkyline

Submitted by ChenLiang on Fri, 10/21/2016 - 16:22

Extensive efforts have been made to understand genomic function through both experimental and computational approaches, yet proper annotation still remains challenging, especially in non-coding regions. In this manuscript, we introduce GenoSkyline, an unsupervised learning framework to predict tissue-specific functional regions through integrating high-throughput epigenetic annotations. GenoSkyline successfully identified a variety of non-coding regulatory machinery including enhancers, regulatory miRNA, and hypomethylated transposable elements in extensive case studies.

Rating: 
Average: 5 (1 vote)

MirCompare

Submitted by ChenLiang on Fri, 10/21/2016 - 16:25

MicroRNAs (miRNAs) are a class of small noncoding RNAs that act as efficient post-transcriptional regulators of gene expression. In 2012, the first cross-kingdom miRNA-based interaction had been evidenced, demonstrating that exogenous miRNAs act in a manner of mammalian functional miRNAs. Starting from this evidence, we defined the concept of cross-kingdom functional homology between plant and mammalian miRNAs as a needful requirement for vegetal miRNA to explicit a regulation mechanism into the host mammalian cell, comparable to the endogenous one.

Rating: 
Average: 5 (1 vote)

ImmunemiR

Submitted by ChenLiang on Thu, 04/06/2017 - 19:19

MicroRNAs are a class of small non-coding regulatory RNA molecules that modulate the expression of several genes at post-transcriptional level and play a vital role in disease pathogenesis. Recent research shows that a range of miRNAs are involved in the regulation of immunity and its deregulation results in immune mediated diseases such as cancer, inflammation and autoimmune diseases. Computational discovery of these immune miRNAs using a set of specific features is highly desirable.

Rating: 
5
Average: 5 (2 votes)

Pages

Subscribe to Regulatory Network