Status:
Platform:
Implement Technique:
Methods:
Species:
Adipogenesis is the process of cell differentiation by which mesenchymal stem cells become adipocytes. Extensive research is ongoing to identify genes, their protein products, and microRNAs that correlate with fat cell development. The existing databases have focused on certain types of regulatory factors and interactions. However, there is no relationship between the results of the experimental studies on adipogenesis and these databases because of the lack of an information center. This information fragmentation hampers the identification of key regulatory genes and pathways. Thus, it is necessary to provide an information center that is quickly and easily accessible to researchers in this field. We selected and integrated data from eight external databases based on the results of text-mining, and constructed a publicly available database and web interface (URL: http://210.27.80.93/arn/ ), which contained 30873 records related to adipogenic differentiation. Then, we designed an online analysis tool to analyze the experimental data or form a scientific hypothesis about adipogenesis through Swanson's literature-based discovery process. Furthermore, we calculated the "Impact Factor" ("IF") value that reflects the importance of each node by counting the numbers of relation records, expression records, and prediction records for each node. This platform can support ongoing adipogenesis research and contribute to the discovery of key regulatory genes and pathways.[1]
Adipogenesis is the process of cell differentiation through which preadipocytes become adipocytes. Lots of research is currently ongoing to identify genes, including their gene products and microRNAs, that correlate with fat cell development. However, information fragmentation hampers the identification of key regulatory genes and pathways. Here, we present a database of literature-curated adipogenesis-related regulatory interactions, designated the Adipogenesis Regulation Network (ARN, http://210.27.80.93/arn/), which currently contains 3101 nodes (genes and microRNAs), 1863 regulatory interactions, and 33,969 expression records associated with adipogenesis, based on 1619 papers. A sentence-based text-mining approach was employed for efficient manual curation of regulatory interactions from approximately 37,000 PubMed abstracts. Additionally, we further determined 13,103 possible node relationships by searching miRGate, BioGRID, PAZAR and TRRUST. ARN also has several useful features: i) regulatory map information; ii) tests to examine the impact of a query node on adipogenesis; iii) tests for the interactions and modes of a query node; iv) prediction of interactions of a query node; and v) analysis of experimental data or the construction of hypotheses related to adipogenesis. In summary, ARN can store, retrieve and analyze adipogenesis-related information as well as support ongoing adipogenesis research and contribute to the discovery of key regulatory genes and pathways.[2]