You are here

Regulatory Network

A gene (or genetic) regulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the gene expression levels of mRNA and proteins. These play a central role in morphogenesis, the creation of body structures, which in turn is central to evolutionary developmental biology (evo-devo). [Source: Wikipedia]

RegNetwork

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Transcriptional and post-transcriptional regulation of gene expression is of fundamental importance to numerous biological processes. Nowadays, an increasing amount of gene regulatory relationships have been documented in various databases and literature. However, to more efficiently exploit such knowledge for biomedical research and applications, it is necessary to construct a genome-wide regulatory network database to integrate the information on gene regulatory relationships that are widely scattered in many different places.

Rating: 
Average: 5 (1 vote)

SpidermiR

Submitted by ChenLiang on Sun, 09/10/2017 - 20:15

Gene Regulatory Networks (GRNs) control many biological systems, but how such network coordination is shaped is still unknown. GRNs can be subdivided into basic connections that describe how the network members interact e.g., co-expression, physical interaction, co-localization, genetic influence, pathways, and shared protein domains. The important regulatory mechanisms of these networks involve miRNAs.

Rating: 
Average: 5 (1 vote)

Pseudo-3D Clustering

Submitted by ChenLiang on Mon, 01/09/2017 - 10:03

Module identification is a frequently used approach for mining local structures with more significance in global networks. Recently, a wide variety of bilayer networks are emerging to characterize the more complex biological processes. In the light of special topological properties of bilayer networks and the accompanying challenges, there is yet no effective method aiming at bilayer module identification to probe the modular organizations from the more inspiring bilayer networks.

Rating: 
Average: 5 (1 vote)

miRTarVis+

Submitted by ChenLiang on Sun, 09/10/2017 - 20:31

In this paper, we present miRTarVis+, a Web-based interactive visual analytics tool for miRNA target predictions and integrative analyses of multiple prediction results. Various microRNA (miRNA) target prediction algorithms have been developed to improve sequence-based miRNA target prediction by exploiting miRNA-mRNA expression profile data. There are also a few analytics tools to help researchers predict targets of miRNAs.

Rating: 
Average: 5 (1 vote)

Exp. Verified microRNA-Target

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recent studies have indicated that microRNA (miRNA) may play an oncogenic or tumor suppressor role in human cancer. To study the regulatory role of miRNAs in tumorigenesis, an integrated platform has been set up to provide a user friendly interface for query. The main advantage of the present platform is that all the miRNA target genes' information and disease records are drawn from experimentally verified or high confidence records.

Rating: 
Average: 5 (1 vote)

ChemoCommunity

Submitted by ChenLiang on Tue, 01/09/2018 - 17:41

Selecting the available treatment for each cancer patient from genomic context is a core goal of precision medicine, but innovative approaches with mechanism interpretation and improved performance are still highly needed. Through utilizing in vitro chemotherapy response data coupled with gene and miRNA expression profiles, we applied a network-based approach that identified markers not as individual molecules but as functional groups extracted from the integrated transcription factor and miRNA regulatory network.

Rating: 
Average: 5 (1 vote)

SignaFish

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Understanding living systems requires an in-depth knowledge of the signaling networks that drive cellular homeostasis, regulate intercellular communication, and contribute to cell fates during development. Several resources exist to provide high-throughput data sets or manually curated interaction information from human or invertebrate model organisms. We previously developed SignaLink, a uniformly curated, multi-layered signaling resource containing information for human and for the model organisms nematode Caenorhabditis elegans and fruit fly Drosophila melanogaster.

Rating: 
Average: 5 (1 vote)

CR2Cancer

Submitted by ChenLiang on Tue, 01/09/2018 - 17:43

Chromatin regulators (CRs) can dynamically modulate chromatin architecture to epigenetically regulate gene expression in response to intrinsic and extrinsic signalling cues. Somatic alterations or misexpression of CRs might reprogram the epigenomic landscape of chromatin, which in turn lead to a wide range of common diseases, notably cancer. Here, we present CR2Cancer, a comprehensive annotation and visualization database for CRs in human cancer constructed by high throughput data analysis and literature mining.

Rating: 
Average: 5 (1 vote)

Director

Submitted by ChenLiang on Tue, 01/09/2018 - 17:47

High-throughput measurement technologies have triggered a rise in large-scale cancer studies containing multiple levels of molecular data. While there are a number of efficient methods to analyze individual data types, there are far less that enhance data interpretation after analysis. We present the R package Director, a dynamic visualization approach to linking and interrogating multiple levels of molecular data after analysis for clinically meaningful, actionable insights.

Rating: 
5
Average: 4.5 (2 votes)

DPMIND

Submitted by ChenLiang on Tue, 01/09/2018 - 17:48

MicroRNAs (miRNAs) play essential roles in plant growth, development and stress responses through post-transcriptionally regulating the expression levels of their target mRNAs. Although some tools and databases were developed for predicting the relationships between miRNAs and their targets (miR-Tar), most of them were dependent on computational methods without experimental validations. With development of degradome sequencing techniques, researchers can identify potential interactions based on degradome sequencing data.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Regulatory Network