You are here

Regulatory Network

A gene (or genetic) regulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the gene expression levels of mRNA and proteins. These play a central role in morphogenesis, the creation of body structures, which in turn is central to evolutionary developmental biology (evo-devo). [Source: Wikipedia]

ActMiR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) play a key role in regulating tumor progression and metastasis. Identifying key miRNAs, defined by their functional activities, can provide a deeper understanding of biology of miRNAs in cancer. However, miRNA expression level cannot accurately reflect miRNA activity.

Rating: 
Average: 4.5 (2 votes)

CrossHub

Submitted by ChenLiang on Thu, 04/06/2017 - 17:40

The contribution of different mechanisms to the regulation of gene expression varies for different tissues and tumors. Complementation of predicted mRNA-miRNA and gene-transcription factor (TF) relationships with the results of expression correlation analyses derived for specific tumor types outlines the interactions with functional impact in the current biomaterial.

Rating: 
Average: 5 (1 vote)

HOCCLUS2

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small non-coding RNAs which play a key role in the post-transcriptional regulation of many genes. Elucidating miRNA-regulated gene networks is crucial for the understanding of mechanisms and functions of miRNAs in many biological processes, such as cell proliferation, development, differentiation and cell homeostasis, as well as in many types of human tumors. To this aim, we have recently presented the biclustering method HOCCLUS2, for the discovery of miRNA regulatory networks.

Rating: 
Average: 5 (1 vote)

miRHiC

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs), a class of endogenous small regulatory RNAs, play important roles in many biological and physiological processes. The perturbations of some miRNAs, which are usually called as onco-microRNAs (onco-miRs), are significantly associated with multiple stages of cancer. Although hundreds of miRNAs have been discovered, the perturbed miRNA regulatory networks and their functions are still poorly understood in cancer. Analyzing the expression patterns of miRNA target genes is a very useful strategy to infer the perturbed miRNA networks.

Rating: 
Average: 5 (1 vote)

ComiRNet

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The understanding of mechanisms and functions of microRNAs (miRNAs) is fundamental for the study of many biological processes and for the elucidation of the pathogenesis of many human diseases. Technological advances represented by high-throughput technologies, such as microarray and next-generation sequencing, have significantly aided miRNA research in the last decade. Nevertheless, the identification of true miRNA targets and the complete elucidation of the rules governing their functional targeting remain nebulous.

Rating: 
Average: 5 (1 vote)

miRTargetLink

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Information on miRNA targeting genes is growing rapidly. For high-throughput experiments, but also for targeted analyses of few genes or miRNAs, easy analysis with concise representation of results facilitates the work of life scientists. We developed miRTargetLink, a tool for automating respective analysis procedures that are frequently applied. Input of the web-based solution is either a single gene or single miRNA, but also sets of genes or miRNAs, can be entered. Validated and predicted targets are extracted from databases and an interaction network is presented.

Rating: 
Average: 5 (1 vote)

ARN (Adipogenesis)

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Adipogenesis is the process of cell differentiation by which mesenchymal stem cells become adipocytes. Extensive research is ongoing to identify genes, their protein products, and microRNAs that correlate with fat cell development. The existing databases have focused on certain types of regulatory factors and interactions. However, there is no relationship between the results of the experimental studies on adipogenesis and these databases because of the lack of an information center.

Rating: 
5
Average: 4.5 (2 votes)

FARE-CAFE

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Chromosomal translocation (CT) is of enormous clinical interest because this disorder is associated with various major solid tumors and leukemia. A tumor-specific fusion gene event may occur when a translocation joins two separate genes. Currently, various CT databases provide information about fusion genes and their genomic elements. However, no database of the roles of fusion genes, in terms of essential functional and regulatory elements in oncogenesis, is available.

Rating: 
Average: 5 (1 vote)

ProteoMirExpress

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) regulate gene expression through translational repression and RNA degradation. Recently developed high-throughput proteomic methods measure gene expression changes at protein level and therefore can reveal the direct effects of miRNAs' translational repression. Here, we present a web server, ProteoMirExpress, that integrates proteomic and mRNA expression data together to infer miRNA-centered regulatory networks.

Rating: 
Average: 5 (1 vote)

PMF NETWORK MODEL

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

microRNAs (miRNAs) are relevant in the pathogenesis of primary myelofibrosis (PMF) but our understanding is limited to specific target genes and the overall systemic scenario islacking. By both knowledge-based and ab initio approaches for comparative analysis of CD34+ cells of PMF patients and healthy controls, we identified the deregulated pathways involving miRNAs and genes and new transcriptional and post-transcriptional regulatory circuits in PMF cells.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Regulatory Network