You are here

Identification

miRDeep

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The capacity of highly parallel sequencing technologies to detect small RNAs at unprecedented depth suggests their value in systematically identifying microRNAs (miRNAs). However, the identification of miRNAs from the large pool of sequenced transcripts from a single deep sequencing run remains a major challenge. Here, we present an algorithm, miRDeep, which uses a probabilistic model of miRNA biogenesis to score compatibility of the position and frequency of sequenced RNA with the secondary structure of the miRNA precursor.

Rating: 
5
Average: 5 (2 votes)

TargetFinder

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Plants and animals use small RNAs (microRNAs [miRNAs] and siRNAs) as guides for posttranscriptional and epigenetic regulation. In plants, miRNAs and trans-acting (ta) siRNAs form through distinct biogenesis pathways, although they both interact with target transcripts and guide cleavage. An integrated approach to identify targets of Arabidopsis thaliana miRNAs and ta-siRNAs revealed several new classes of small RNA-regulated genes, including conventional genes such as Argonaute2 and an E2-ubiquitin conjugating enzyme.

Rating: 
5
Average: 5 (2 votes)

RNA22

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

We present rna22, a method for identifying microRNA binding sites and their corresponding heteroduplexes. Rna22 does not rely upon cross-species conservation, is resilient to noise, and, unlike previous methods, it first finds putative microRNA binding sites in the sequence of interest, then identifies the targeting microRNA. Computationally, we show that rna22 identifies most of the currently known heteroduplexes. Experimentally, with luciferase assays, we demonstrate average repressions of 30% or more for 168 of 226 tested targets.

Rating: 
5
Average: 5 (2 votes)

CMfinder

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The recent discoveries of large numbers of non-coding RNAs and computational advances in genome-scale RNA search create a need for tools for automatic, high quality identification and characterization of conserved RNA motifs that can be readily used for database search. Previous tools fall short of this goal.

Rating: 
Average: 5 (1 vote)

miRanalyzer

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Next-generation sequencing allows now the sequencing of small RNA molecules and the estimation of their expression levels. Consequently, there will be a high demand of bioinformatics tools to cope with the several gigabytes of sequence data generated in each single deep-sequencing experiment. Given this scene, we developed miRanalyzer, a web server tool for the analysis of deep-sequencing experiments for small RNAs. The web server tool requires a simple input file containing a list of unique reads and its copy numbers (expression levels).

Rating: 
Average: 5 (1 vote)

RNAmicro

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recently, genome-wide surveys for non-coding RNAs have provided evidence for tens of thousands of previously undescribed evolutionary conserved RNAs with distinctive secondary structures. The annotation of these putative ncRNAs, however, remains a difficult problem. Here we describe an SVM-based approach that, in conjunction with a non-stringent filter for consensus secondary structures, is capable of efficiently recognizing microRNA precursors in multiple sequence alignments.

Rating: 
Average: 5 (1 vote)

ProMiR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small regulatory RNAs of approximately 22 nt. Although hundreds of miRNAs have been identified through experimental complementary DNA cloning methods and computational efforts, previous approaches could detect only abundantly expressed miRNAs or close homologs of previously identified miRNAs. Here, we introduce a probabilistic co-learning model for miRNA gene finding, ProMiR, which simultaneously considers the structure and sequence of miRNA precursors (pre-miRNAs).

Rating: 
Average: 5 (1 vote)

MIReNA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are a class of endogenes derived from a precursor (pre-miRNA) and involved in post-transcriptional regulation. Experimental identification of novel miRNAs is difficult because they are often transcribed under specific conditions and cell types. Several computational methods were developed to detect new miRNAs starting from known ones or from deep sequencing data, and to validate their pre-miRNAs.

Rating: 
Average: 5 (1 vote)

deep_sequencing

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs are a class of small non-coding RNAs that regulate mRNA expression at the post - transcriptional level and thereby many fundamental biological processes. A number of methods, such as multiplex polymerase chain reaction, microarrays have been developed for profiling levels of known miRNAs. These methods lack the ability to identify novel miRNAs and accurately determine expression at a range of concentrations.

Rating: 
Average: 5 (1 vote)

miPred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

To distinguish the real pre-miRNAs from other hairpin sequences with similar stem-loops (pseudo pre-miRNAs), a hybrid feature which consists of local contiguous structure-sequence composition, minimum of free energy (MFE) of the secondary structure and P-value of randomization test is used. Besides, a novel machine-learning algorithm, random forest (RF), is introduced. The results suggest that our method predicts at 98.21% specificity and 95.09% sensitivity.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Identification