You are here

MAC OS

TALASSO

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

miRNAs are small RNA molecules (' 22nt) that interact with their corresponding target mRNAs inhibiting the translation of the mRNA into proteins and cleaving the target mRNA. This second effect diminishes the overall expression of the target mRNA. Several miRNA-mRNA relationship databases have been deployed, most of them based on sequence complementarities. However, the number of false positives in these databases is large and they do not overlap completely.

Rating: 
Average: 5 (1 vote)

CoRAL

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The surprising observation that virtually the entire human genome is transcribed means we know little about the function of many emerging classes of RNAs, except their astounding diversities. Traditional RNA function prediction methods rely on sequence or alignment information, which are limited in their abilities to classify the various collections of non-coding RNAs (ncRNAs). To address this, we developed Classification of RNAs by Analysis of Length (CoRAL), a machine learning-based approach for classification of RNA molecules.

Rating: 
Average: 5 (1 vote)

MiRdup

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are short RNA species derived from hairpin-forming miRNA precursors (pre-miRNA) and acting as key posttranscriptional regulators. Most computational tools labeled as miRNA predictors are in fact pre-miRNA predictors and provide no information about the putative miRNA location within the pre-miRNA. Sequence and structural features that determine the location of the miRNA, and the extent to which these properties vary from species to species, are poorly understood.

Rating: 
Average: 5 (1 vote)

RIsearch

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Regulatory, non-coding RNAs often function by forming a duplex with other RNAs. It is therefore of interest to predict putative RNA-RNA duplexes in silico on a genome-wide scale. Current computational methods for predicting these interactions range from fast complementary-based searches to those that take intramolecular binding into account. Together these methods constitute a trade-off between speed and accuracy, while leaving room for improvement within the context of genome-wide screens. A fast pre-filtering of putative duplexes would therefore be desirable.

Rating: 
Average: 5 (1 vote)

TargetScore

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Systematic identification of microRNA (miRNA) targets remains a challenge. The miRNA overexpression coupled with genome-wide expression profiling is a promising new approach and calls for a new method that integrates expression and sequence information.

Rating: 
Average: 5 (1 vote)

mirMark

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MiRNAs play important roles in many diseases including cancers. However computational prediction of miRNA target genes is challenging and the accuracies of existing methods remain poor. We report mirMark, a new machine learning-based method of miRNA target prediction at the site and UTR levels. This method uses experimentally verified miRNA targets from miRecords and mirTarBase as training sets and considers over 700 features.

Rating: 
Average: 5 (1 vote)

FlaiMapper

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recent discoveries show that most types of small non-coding RNAs (sncRNAs) such as miRNAs, snoRNAs and tRNAs get further processed into putatively active smaller RNA species. Their roles, genetic profiles and underlying processing mechanisms are only partially understood. To find their quantities and characteristics, a proper annotation is essential. Here, we present FlaiMapper, a method that extracts and annotates the locations of sncRNA-derived RNAs (sncdRNAs). These sncdRNAs are often detected in sequencing data and observed as fragments of their precursor sncRNA.

Rating: 
Average: 5 (1 vote)

miRtest

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Expression levels of mRNAs are among other factors regulated by microRNAs. A particular microRNA can bind specifically to several target mRNAs and lead to their degradation. Expression levels of both, mRNAs and microRNAs, can be obtained by microarray experiments. In order to increase the power of detecting microRNAs that are differentially expressed between two different groups of samples, we incorporate expression levels of their related target gene sets.

Rating: 
Average: 5 (1 vote)

HuntMi

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Machine learning techniques are known to be a powerful way of distinguishing microRNA hairpins from pseudo hairpins and have been applied in a number of recognised miRNA search tools. However, many current methods based on machine learning suffer from some drawbacks, including not addressing the class imbalance problem properly. It may lead to overlearning the majority class and/or incorrect assessment of classification performance. Moreover, those tools are effective for a narrow range of species, usually the model ones.

Rating: 
Average: 5 (1 vote)

MTide

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Small RNA sequencing and degradome sequencing (also known as parallel analysis of RNA ends) have provided rich information on the microRNA (miRNA) and its cleaved mRNA targets on a genome-wide scale in plants, but no computational tools have been developed to effectively and conveniently deconvolute the miRNA-target interaction (MTI).

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to MAC OS