You are here

CoRAL

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Status:

Implement Technique:

Species:

Pubmed IDs: 
Rating: 
Average: 5 (1 vote)

The surprising observation that virtually the entire human genome is transcribed means we know little about the function of many emerging classes of RNAs, except their astounding diversities. Traditional RNA function prediction methods rely on sequence or alignment information, which are limited in their abilities to classify the various collections of non-coding RNAs (ncRNAs). To address this, we developed Classification of RNAs by Analysis of Length (CoRAL), a machine learning-based approach for classification of RNA molecules. CoRAL uses biologically interpretable features including fragment length and cleavage specificity to distinguish between different ncRNA populations. We evaluated CoRAL using genome-wide small RNA sequencing data sets from four human tissue types and were able to classify six different types of RNAs with ~80% cross-validation accuracy. Analysis by CoRAL revealed that microRNAs, small nucleolar and transposon-derived RNAs are highly discernible and consistent across all human tissue types assessed, whereas long intergenic ncRNAs, small cytoplasmic RNAs and small nuclear RNAs show less consistent patterns. The ability to reliably annotate loci across tissue types demonstrates the potential of CoRAL to characterize ncRNAs using small RNA sequencing data in less well-characterized organisms.[1]

Recent advances in high-throughput sequencing allow researchers to examine the transcriptome in more detail than ever before. Using a method known as high-throughput small RNA-sequencing, we can now profile the expression of small regulatory RNAs such as microRNAs and small interfering RNAs (siRNAs) with a great deal of sensitivity. However, there are many other types of small RNAs (<50nt) present in the cell, including fragments derived from snoRNAs (small nucleolar RNAs), snRNAs (small nuclear RNAs), scRNAs (small cytoplasmic RNAs), tRNAs (transfer RNAs), and transposon-derived RNAs. Here, we present a user's guide for CoRAL (Classification of RNAs by Analysis of Length), a computational method for discriminating between different classes of RNA using high-throughput small RNA-sequencing data. Not only can CoRAL distinguish between RNA classes with high accuracy, but it also uses features that are relevant to small RNA biogenesis pathways. By doing so, CoRAL can give biologists a glimpse into the characteristics of different RNA processing pathways and how these might differ between tissue types, biological conditions, or even different species. CoRAL is available at http://wanglab.pcbi.upenn.edu/coral/.[2]


References