You are here

MAC OS

CHRONOS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In the era of network medicine and the rapid growth of paired time series mRNA/microRNA expression experiments, there is an urgent need for pathway enrichment analysis methods able to capture the time- and condition-specific 'active parts' of the biological circuitry as well as the microRNA impact. Current methods ignore the multiple dynamical 'themes'-in the form of enriched biologically relevant microRNA-mediated subpathways-that determine the functionality of signaling networks across time.

Rating: 
5
Average: 4.5 (2 votes)

ORCA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Often during the analysis of biological data, it is of importance to interpret the correlation structure that exists between variables. Such correlations may reveal patterns of co-regulation that are indicative of biochemical pathways or common mechanisms of response to a related set of treatments. However, analyses of correlations are usually conducted by either subjective interpretation of the univariate covariance matrix or by applying multivariate modeling techniques, which do not take prior biological knowledge into account.

Rating: 
Average: 5 (1 vote)

FREM

Submitted by ChenLiang on Mon, 01/09/2017 - 10:25

MicroRNAs (miRNAs) are known as an important indicator of cancers. Presence of cancer can be detected by identifying the responsible miRNAs. A fuzzy-rough entropy measure (FREM) is developed which can rank the miRNAs and thereby identifying the relevant ones. FREM is used to determine the relevance of a miRNA in terms of separability between normal and cancer classes. While computing the FREM for a miRNA, fuzziness takes care of the overlapping between normal and cancer expressions, whereas rough lower approximation determines their class sizes.

Rating: 
Average: 5 (1 vote)

MicroTarget

Submitted by ChenLiang on Sun, 09/10/2017 - 20:23

MicroRNAs are known to play an essential role in gene regulation in plants and animals. The standard method for understanding microRNA-gene interactions is randomized controlled perturbation experiments. These experiments are costly and time consuming. Therefore, use of computational methods is essential. Currently, several computational methods have been developed to discover microRNA target genes. However, these methods have limitations based on the features that are used for prediction.

Rating: 
Average: 5 (1 vote)

ESPSearch

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

ESPSearch is a computer program for rapidly identifying nucleic acid or amino acid sequences of any length within any source sequence from promoters to entire genomes to protein libraries. ESPSearch utilizes a user-constructed database to identify many sequences simultaneously, including target sequences with wildcards and mismatches and user-specified patterns of those recognized sequences.

Rating: 
Average: 5 (1 vote)

BiCliques Merging

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are post-transcriptional regulators that repress the expression of their targets. They are known to work cooperatively with genes and play important roles in numerous cellular processes. Identification of miRNA regulatory modules (MRMs) would aid deciphering the combinatorial effects derived from the many-to-many regulatory relationships in complex cellular systems. Here, we develop an effective method called BiCliques Merging (BCM) to predict MRMs based on bicliques merging.

Rating: 
4
Average: 4 (2 votes)

Loregic

Submitted by ChenLiang on Thu, 04/06/2017 - 18:45

The topology of the gene-regulatory network has been extensively analyzed. Now, given the large amount of available functional genomic data, it is possible to go beyond this and systematically study regulatory circuits in terms of logic elements. To this end, we present Loregic, a computational method integrating gene expression and regulatory network data, to characterize the cooperativity of regulatory factors. Loregic uses all 16 possible two-input-one-output logic gates (e.g. AND or XOR) to describe triplets of two factors regulating a common target.

Rating: 
Average: 5 (1 vote)

iJRF

Submitted by ChenLiang on Sun, 09/10/2017 - 17:08

Integrative approaches characterizing the interactions among different types of biological molecules have been demonstrated to be useful for revealing informative biological mechanisms. One such example is the interaction between microRNA (miRNA) and messenger RNA (mRNA), whose deregulation may be sensitive to environmental insult leading to altered phenotypes. The goal of this work is to develop an effective data integration method to characterize deregulation between miRNA and mRNA due to environmental toxicant exposures.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to MAC OS