You are here

Windows

GenoSkyline

Submitted by ChenLiang on Fri, 10/21/2016 - 16:22

Extensive efforts have been made to understand genomic function through both experimental and computational approaches, yet proper annotation still remains challenging, especially in non-coding regions. In this manuscript, we introduce GenoSkyline, an unsupervised learning framework to predict tissue-specific functional regions through integrating high-throughput epigenetic annotations. GenoSkyline successfully identified a variety of non-coding regulatory machinery including enhancers, regulatory miRNA, and hypomethylated transposable elements in extensive case studies.

Rating: 
Average: 5 (1 vote)

DMTHNDM

Submitted by ChenLiang on Tue, 01/09/2018 - 17:18

MicroRNAs (miRNAs), as a kind of important small endogenous single-stranded non-coding RNA, play critical roles in a large number of human diseases. However, the currently known experimental verifications of the disease-miRNA associations are still rare and experimental identification is time-consuming and labor-intensive. Accordingly, identifying potential disease-related miRNAs to help people understand the pathogenesis of complex diseases has become a hot topic.

Rating: 
Average: 5 (1 vote)

miRAFinder and GeneAFinder scripts

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In recent times, information on miRNAs and their binding sites is gaining momentum. Therefore, there is interest in the development of tools extracting miRNA related information from known literature. Hence, we describe GeneAFinder and miRAFinder scripts (open source) developed using python programming for the semi-automatic extraction and arrangement of updated information on miRNAs, genes and additional data from published article abstracts in PubMed. The scripts are suitable for custom modification as per requirement.

Rating: 
Average: 5 (1 vote)

TopKLists

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-throughput sequencing techniques are increasingly affordable and produce massive amounts of data. Together with other high-throughput technologies, such as microarrays, there are an enormous amount of resources in databases. The collection of these valuable data has been routine for more than a decade. Despite different technologies, many experiments share the same goal. For instance, the aims of RNA-seq studies often coincide with those of differential gene expression experiments based on microarrays. As such, it would be logical to utilize all available data.

Rating: 
5
Average: 4.5 (2 votes)

dChip

Submitted by ChenLiang on Thu, 04/06/2017 - 17:42

Genome-wide expression signatures are emerging as potential marker for overall survival and disease recurrence risk as evidenced by recent commercialization of gene expression based biomarkers in breast cancer. Similar predictions have recently been carried out using genome-wide copy number alterations and microRNAs. Existing software packages for microarray data analysis provide functions to define expression-based survival gene signatures.

Rating: 
Average: 5 (1 vote)

FMIGS

Submitted by ChenLiang on Sun, 09/10/2017 - 17:05

MicroRNAs (miRNA) are one of the important regulators of cell division and also responsible for cancer development. Among the discovered miRNAs, not all are important for cancer detection. In this regard a fuzzy mutual information (FMI) based grouping and miRNA selection method (FMIGS) is developed to identify the miRNAs responsible for a particular cancer. First, the miRNAs are ranked and divided into several groups. Then the most important group is selected among the generated groups.

Rating: 
Average: 5 (1 vote)

miRNAss

Submitted by ChenLiang on Tue, 01/09/2018 - 19:24

Although many machine learning techniques have been proposed for distinguishing miRNA hairpins from other stem-loop sequences, most of the current methods use supervised learning, which requires a very good set of positive and negative examples. Those methods have important practical limitations when they have to be applied to a real prediction task. First, there is the challenge of dealing with a scarce number of positive (well-known) pre-miRNA examples.

Rating: 
4
Average: 3.5 (2 votes)

ARTS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

A fast growing number of non-coding RNAs have recently been discovered to play essential roles in many cellular processes. Similar to proteins, understanding the functions of these active RNAs requires methods for analyzing their tertiary structures. However, in contrast to the wide range of structure-based approaches available for proteins, there is still a lack of methods for studying RNA structures.

Rating: 
Average: 5 (1 vote)

InCroMAP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Traditionally, microarrays were almost exclusively used for the genome-wide analysis of differential gene expression. But nowadays, their scope of application has been extended to various genomic features, such as microRNAs (miRNAs), proteins and DNA methylation (DNAm). Most available methods for the visualization of these datasets are focused on individual platforms and are not capable of integratively visualizing multiple microarray datasets from cross-platform studies.

Rating: 
Average: 5 (1 vote)

sRNATarget

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Accurate prediction of sRNA targets plays a key role in determining sRNA functions. Here we introduced two mathematical models, sRNATargetNB and sRNATargetSVM, for prediction of sRNA targets using Nai ve Bayes method and support vector machines (SVM), respectively. The training dataset was composed of 46 positive samples (real sRNA-targets interaction) and 86 negative samples (no interaction between sRNA and targets). The leave-one-out cross-validation (LOOCV) classification accuracy was 91.67% for sRNATargetNB, and 100.00% for sRNATargetSVM.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Windows