You are here

Windows

SeRPeNT

Submitted by ChenLiang on Tue, 01/09/2018 - 19:03

Small non-coding RNAs (sncRNAs) are highly abundant molecules that regulate essential cellular processes and are classified according to sequence and structure. Here we argue that read profiles from size-selected RNA sequencing capture the post-transcriptional processing specific to each RNA family, thereby providing functional information independently of sequence and structure.

Rating: 
Average: 5 (1 vote)

biRte

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In the last years there has been an increasing effort to computationally model and predict the influence of regulators (transcription factors, miRNAs) on gene expression. Here we introduce biRte as a computationally attractive approach combining Bayesian inference of regulator activities with network reverse engineering. biRte integrates target gene predictions with different omics data entities (e.g. miRNA and mRNA data) into a joint probabilistic framework.

Rating: 
Average: 5 (1 vote)

iSmaRT

Submitted by ChenLiang on Mon, 01/09/2017 - 13:33

The interest in investigating the biological roles of small non-coding RNAs (sncRNAs) is increasing, due to the pleiotropic effects of these molecules exert in many biological contexts. While several methods and tools are available to study microRNAs (miRNAs), only few focus on novel classes of sncRNAs, in particular PIWI-interacting RNAs (piRNAs). To overcome these limitations, we implemented iSmaRT (integrative Small RNA Tool-kit), an automated pipeline to analyze smallRNA-Seq data.

Rating: 
Average: 5 (1 vote)

MiRE

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

To provide a set of useful analysis tools for the researchers to explore the microRNA data.
The R language was used for generating the Graphical Users Interface and implementing most functions. Some Practical Extraction and Report Language (Perl) scripts were used for parsing source files.

Rating: 
Average: 5 (2 votes)

deepboost

Submitted by ChenLiang on Sun, 09/10/2017 - 16:53

Characterizing the binding behaviors of RNA-binding proteins (RBPs) is important for understanding their functional roles in gene expression regulation. However, current high-throughput experimental methods for identifying RBP targets, such as CLIP-seq and RNAcompete, usually suffer from the false negative issue. Here, we develop a deep boosting based machine learning approach, called DeBooster, to accurately model the binding sequence preferences and identify the corresponding binding targets of RBPs from CLIP-seq data.

Rating: 
Average: 5 (1 vote)

GRNMF

Submitted by ChenLiang on Tue, 01/09/2018 - 17:03

MicroRNAs (miRNAs) play crucial roles in post-transcriptional regulations and various cellular processes. The identification of disease-related miRNAs provides great insights into the underlying pathogenesis of diseases at a system level. However, most existing computational approaches are biased towards known miRNA-disease associations, which is inappropriate for those new diseases or miRNAs without any known association information.

Rating: 
Average: 5 (1 vote)

CePa

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

CePa is an R package aiming to find significant pathways through network topology information. The package has several advantages compared with current pathway enrichment tools. First, pathway node instead of single gene is taken as the basic unit when analysing networks to meet the fact that genes must be constructed into complexes to hold normal functions. Second, multiple network centralities are applied simultaneously to measure importance of nodes from different aspects to make a full view on the biological system.

Rating: 
Average: 5 (1 vote)

msgl

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Contamination of a cancer tissue by the surrounding benign (non-cancerous) tissue is a concern for molecular cancer diagnostics. This is because an observed molecular signature will be distorted by the surrounding benign tissue, possibly leading to an incorrect diagnosis. One example is molecular identification of the primary tumor site of metastases because biopsies of metastases typically contain a significant amount of benign tissue.

Rating: 
Average: 5 (1 vote)

GenoSkyline

Submitted by ChenLiang on Fri, 10/21/2016 - 16:22

Extensive efforts have been made to understand genomic function through both experimental and computational approaches, yet proper annotation still remains challenging, especially in non-coding regions. In this manuscript, we introduce GenoSkyline, an unsupervised learning framework to predict tissue-specific functional regions through integrating high-throughput epigenetic annotations. GenoSkyline successfully identified a variety of non-coding regulatory machinery including enhancers, regulatory miRNA, and hypomethylated transposable elements in extensive case studies.

Rating: 
Average: 5 (1 vote)

DMTHNDM

Submitted by ChenLiang on Tue, 01/09/2018 - 17:18

MicroRNAs (miRNAs), as a kind of important small endogenous single-stranded non-coding RNA, play critical roles in a large number of human diseases. However, the currently known experimental verifications of the disease-miRNA associations are still rare and experimental identification is time-consuming and labor-intensive. Accordingly, identifying potential disease-related miRNAs to help people understand the pathogenesis of complex diseases has become a hot topic.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Windows