You are here

Windows

NqA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In this note, we propose an R function named NqA (Normalization qPCR Array, where qPCR is quantitative real-time polymerase chain reaction) suitable for the identification of a set of microRNAs (miRNAs) to be used for data normalization in view of subsequent validation studies with qPCR data.

Rating: 
Average: 5 (1 vote)

ShrinkBayes

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Complex designs are common in (observational) clinical studies. Sequencing data for such studies are produced more and more often, implying challenges for the analysis, such as excess of zeros, presence of random effects and multi-parameter inference. Moreover, when sample sizes are small, inference is likely to be too liberal when, in a Bayesian setting, applying a non-appropriate prior or to lack power when not carefully borrowing information across features.

Rating: 
Average: 5 (1 vote)

AmiRNA Designer

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small non-coding RNAs that have been found in most of the eukaryotic organisms. They are involved in the regulation of gene expression at the post-transcriptional level in a sequence specific manner. MiRNAs are produced from their precursors by Dicer-dependent small RNA biogenesis pathway. Involvement of miRNAs in a wide range of biological processes makes them excellent candidates for studying gene function or for therapeutic applications. For this purpose, different RNA-based gene silencing techniques have been developed.

Rating: 
Average: 4.5 (2 votes)

miRNA-Analyzer

Submitted by ChenLiang on Mon, 01/09/2017 - 11:41

MicroRNAs (miRNAs) are small biological molecules that play an important role during the mechanisms of protein formation. Recent findings have demonstrated that they act as both positive and negative regulators of protein formation. Thus, the investigation of miRNAs, i.e., the determination of their level of expression, has developed a huge interest in the scientific community. One of the leading technologies for extracting miRNA data from biological samples is the miRNA Affymetrix platform.

Rating: 
Average: 5 (1 vote)

mirnanalyze

Submitted by ChenLiang on Thu, 04/06/2017 - 19:32

The current state-of-the-art in cancer diagnosis and treatment is not ideal; diagnostic tests are accurate but invasive, and treatments are "one-size fits-all" instead of being personalized. Recently, miRNA's have garnered significant attention as cancer biomarkers, owing to their ease of access (circulating miRNA in the blood) and stability. There have been many studies showing the effectiveness of miRNA data in diagnosing specific cancer types, but few studies explore the role of miRNA in predicting treatment outcome.

Rating: 
Average: 5 (1 vote)

PHMMTSs

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The computational identification of non-coding RNA regions on the genome is currently receiving much attention. However, it is essentially harder than gene-finding problems for protein-coding regions because non-coding RNA sequences do not have strong statistical signals. Since comparative sequence analysis is effective for non-coding RNA detection, efficient computational methods are expected for structural alignment of RNA sequences.

Rating: 
Average: 5 (1 vote)

Functional interpretation of microRNA-mRNA association

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The prediction of microRNA targets is a challenging task that has given rise to several prediction algorithms. Databases of predicted targets can be used in a microRNA target enrichment analysis, enhancing our capacity to extract functional information from gene lists. However, the available tools in this field analyze gene sets one by one limiting their use in a meta-analysis. Here, we present an R system for miRNA enrichment analysis that is suitable for systems biology.

Rating: 
Average: 5 (1 vote)

application in consensus ranking of microRNA targets

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs are very recently discovered small noncoding RNAs, responsible for negative regulation of gene expression. Members of this endogenous family of small RNA molecules have been found implicated in many genetic disorders. Each microRNA targets tens to hundreds of genes. Experimental validation of target genes is a time- and cost-intensive procedure. Therefore, prediction of microRNA targets is a very important problem in computational biology.

Rating: 
Average: 5 (1 vote)

MicroSyn

Submitted by ChenLiang on Thu, 04/06/2017 - 19:37

The traditional phylogeny analysis within gene family is mainly based on DNA or amino acid sequence homologies. However, these phylogenetic tree analyses are not suitable for those "non-traditional" gene families like microRNA with very short sequences. For the normal protein-coding gene families, low bootstrap values are frequently encountered in some nodes, suggesting low confidence or likely inappropriateness of placement of those members in those nodes.

Rating: 
Average: 5 (1 vote)

MicroTarget

Submitted by ChenLiang on Sun, 09/10/2017 - 20:23

MicroRNAs are known to play an essential role in gene regulation in plants and animals. The standard method for understanding microRNA-gene interactions is randomized controlled perturbation experiments. These experiments are costly and time consuming. Therefore, use of computational methods is essential. Currently, several computational methods have been developed to discover microRNA target genes. However, these methods have limitations based on the features that are used for prediction.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Windows