You are here

Target Prediction

CSmiRTar

Submitted by ChenLiang on Sun, 09/10/2017 - 16:52

MicroRNAs (miRNAs) are functional RNA molecules which play important roles in the post-transcriptional regulation. miRNAs regulate their target genes by repressing translation or inducing degradation of the target genes' mRNAs. Many databases have been constructed to provide computationally predicted miRNA targets. However, they cannot provide the miRNA targets expressed in a specific tissue and related to a specific disease at the same time. Moreover, they cannot provide the common targets of multiple miRNAs and the common miRNAs of multiple genes at the same time.

Rating: 
Average: 5 (1 vote)

metaMIR

Submitted by ChenLiang on Tue, 01/09/2018 - 16:53

MicroRNAs (miRNAs) are key regulators of cell-fate decisions in development and disease with a vast array of target interactions that can be investigated using computational approaches. For this study, we developed metaMIR, a combinatorial approach to identify miRNAs that co-regulate identified subsets of genes from a user-supplied list. We based metaMIR predictions on an improved dataset of human miRNA-target interactions, compiled using a machine-learning-based meta-analysis of established algorithms.

Rating: 
Average: 5 (1 vote)

miR-EdiTar

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

A-to-I RNA editing is an important mechanism that consists of the conversion of specific adenosines into inosines in RNA molecules. Its dysregulation has been associated to several human diseases including cancer. Recent work has demonstrated a role for A-to-I editing in microRNA (miRNA)-mediated gene expression regulation. In fact, edited forms of mature miRNAs can target sets of genes that differ from the targets of their unedited forms. The specific deamination of mRNAs can generate novel binding sites in addition to potentially altering existing ones.

Rating: 
Average: 5 (1 vote)

SIM

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

It has been shown that a random-effects framework can be used to test the association between a gene's expression level and the number of DNA copies of a set of genes. This gene-set modelling framework was later applied to find associations between mRNA expression and microRNA expression, by defining the gene sets using target prediction information.

Rating: 
Average: 5 (1 vote)

SARS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The recognition of microRNA (miRNA)-binding residues in proteins is helpful to understand how miRNAs silence their target genes. It is difficult to use existing computational method to predict miRNA-binding residues in proteins due to the lack of training examples. To address this issue, unlabeled data may be exploited to help construct a computational model. Semisupervised learning deals with methods for exploiting unlabeled data in addition to labeled data automatically to improve learning performance, where no human intervention is assumed.

Rating: 
Average: 5 (1 vote)

iJRF

Submitted by ChenLiang on Sun, 09/10/2017 - 17:08

Integrative approaches characterizing the interactions among different types of biological molecules have been demonstrated to be useful for revealing informative biological mechanisms. One such example is the interaction between microRNA (miRNA) and messenger RNA (mRNA), whose deregulation may be sensitive to environmental insult leading to altered phenotypes. The goal of this work is to develop an effective data integration method to characterize deregulation between miRNA and mRNA due to environmental toxicant exposures.

Rating: 
Average: 5 (1 vote)

MicroTarget

Submitted by ChenLiang on Sun, 09/10/2017 - 20:23

MicroRNAs are known to play an essential role in gene regulation in plants and animals. The standard method for understanding microRNA-gene interactions is randomized controlled perturbation experiments. These experiments are costly and time consuming. Therefore, use of computational methods is essential. Currently, several computational methods have been developed to discover microRNA target genes. However, these methods have limitations based on the features that are used for prediction.

Rating: 
Average: 5 (1 vote)

miRTarVis+

Submitted by ChenLiang on Sun, 09/10/2017 - 20:31

In this paper, we present miRTarVis+, a Web-based interactive visual analytics tool for miRNA target predictions and integrative analyses of multiple prediction results. Various microRNA (miRNA) target prediction algorithms have been developed to improve sequence-based miRNA target prediction by exploiting miRNA-mRNA expression profile data. There are also a few analytics tools to help researchers predict targets of miRNAs.

Rating: 
Average: 5 (1 vote)

IsomiR Bank

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

: Next-Generation Sequencing (NGS) technology has revealed that microRNAs (miRNAs) are capable of exhibiting frequent differences from their corresponding mature reference sequences, generating multiple variants: the isoforms of miRNAs (isomiRs). These isomiRs mainly originate via the imprecise and alternative cleavage during the pre-miRNA processing and post-transcriptional modifications that influence miRNA stability, their sub-cellular localization and target selection.

Rating: 
Average: 5 (1 vote)

New support vector machine-based method for microRNA target prediction

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNA (miRNA) plays important roles in cell differentiation, proliferation, growth, mobility, and apoptosis. An accurate list of precise target genes is necessary in order to fully understand the importance of miRNAs in animal development and disease. Several computational methods have been proposed for miRNA target-gene identification. However, these methods still have limitations with respect to their sensitivity and accuracy. Thus, we developed a new miRNA target-prediction method based on the support vector machine (SVM) model.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Target Prediction