You are here

Target Prediction

MiRNATIP

Submitted by ChenLiang on Thu, 04/06/2017 - 19:34

MicroRNAs (miRNAs) are small non-coding RNA sequences with regulatory functions to post-transcriptional level for several biological processes, such as cell disease progression and metastasis. MiRNAs interact with target messenger RNA (mRNA) genes by base pairing. Experimental identification of miRNA target is one of the major challenges in cancer biology because miRNAs can act as tumour suppressors or oncogenes by targeting different type of targets.

Rating: 
Average: 5 (1 vote)

miR-EdiTar

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

A-to-I RNA editing is an important mechanism that consists of the conversion of specific adenosines into inosines in RNA molecules. Its dysregulation has been associated to several human diseases including cancer. Recent work has demonstrated a role for A-to-I editing in microRNA (miRNA)-mediated gene expression regulation. In fact, edited forms of mature miRNAs can target sets of genes that differ from the targets of their unedited forms. The specific deamination of mRNAs can generate novel binding sites in addition to potentially altering existing ones.

Rating: 
Average: 5 (1 vote)

metaMIR

Submitted by ChenLiang on Tue, 01/09/2018 - 16:53

MicroRNAs (miRNAs) are key regulators of cell-fate decisions in development and disease with a vast array of target interactions that can be investigated using computational approaches. For this study, we developed metaMIR, a combinatorial approach to identify miRNAs that co-regulate identified subsets of genes from a user-supplied list. We based metaMIR predictions on an improved dataset of human miRNA-target interactions, compiled using a machine-learning-based meta-analysis of established algorithms.

Rating: 
Average: 5 (1 vote)

sRNATarget

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Accurate prediction of sRNA targets plays a key role in determining sRNA functions. Here we introduced two mathematical models, sRNATargetNB and sRNATargetSVM, for prediction of sRNA targets using Nai ve Bayes method and support vector machines (SVM), respectively. The training dataset was composed of 46 positive samples (real sRNA-targets interaction) and 86 negative samples (no interaction between sRNA and targets). The leave-one-out cross-validation (LOOCV) classification accuracy was 91.67% for sRNATargetNB, and 100.00% for sRNATargetSVM.

Rating: 
Average: 5 (1 vote)

MiRTDL

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) regulate genes that are associated with various diseases. To better understand miRNAs, the miRNA regulatory mechanism needs to be investigated and the real targets identified. Here, we present miRTDL, a new miRNA target prediction algorithm based on convolutional neural network (CNN). The CNN automatically extracts essential information from the input data rather than completely relying on the input dataset generated artificially when the precise miRNA target mechanisms are poorly known.

Rating: 
Average: 5 (1 vote)

miRNA_Targets

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small non-coding RNAs that play a role in post-transcriptional regulation of gene expression in most eukaryotes. They help in fine-tuning gene expression by targeting messenger RNAs (mRNA). The interactions of miRNAs and mRNAs are sequence specific and computational tools have been developed to predict miRNA target sites on mRNAs, but miRNA research has been mainly focused on target sites within 3' untranslated regions (UTRs) of genes.

Rating: 
Average: 5 (1 vote)

SIM

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

It has been shown that a random-effects framework can be used to test the association between a gene's expression level and the number of DNA copies of a set of genes. This gene-set modelling framework was later applied to find associations between mRNA expression and microRNA expression, by defining the gene sets using target prediction information.

Rating: 
Average: 5 (1 vote)

SARS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The recognition of microRNA (miRNA)-binding residues in proteins is helpful to understand how miRNAs silence their target genes. It is difficult to use existing computational method to predict miRNA-binding residues in proteins due to the lack of training examples. To address this issue, unlabeled data may be exploited to help construct a computational model. Semisupervised learning deals with methods for exploiting unlabeled data in addition to labeled data automatically to improve learning performance, where no human intervention is assumed.

Rating: 
Average: 5 (1 vote)

iJRF

Submitted by ChenLiang on Sun, 09/10/2017 - 17:08

Integrative approaches characterizing the interactions among different types of biological molecules have been demonstrated to be useful for revealing informative biological mechanisms. One such example is the interaction between microRNA (miRNA) and messenger RNA (mRNA), whose deregulation may be sensitive to environmental insult leading to altered phenotypes. The goal of this work is to develop an effective data integration method to characterize deregulation between miRNA and mRNA due to environmental toxicant exposures.

Rating: 
Average: 5 (1 vote)

MicroTarget

Submitted by ChenLiang on Sun, 09/10/2017 - 20:23

MicroRNAs are known to play an essential role in gene regulation in plants and animals. The standard method for understanding microRNA-gene interactions is randomized controlled perturbation experiments. These experiments are costly and time consuming. Therefore, use of computational methods is essential. Currently, several computational methods have been developed to discover microRNA target genes. However, these methods have limitations based on the features that are used for prediction.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Target Prediction