You are here

Target Prediction

STarMirDB

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

microRNAs (miRNAs) are an abundant class of small endogenous non-coding RNAs (ncRNAs) of ~22 nucleotides (nts) in length. These small regulatory molecules are involved in diverse developmental, physiological and pathological processes. miRNAs target mRNAs (mRNAs) for translational repression and/or mRNA degradation. Predictions of miRNA binding sites facilitate experimental validation of miRNA targets. Models developed with data from CLIP studies have been used for predictions of miRNA binding sites in the whole transcriptomes of human, mouse and worm.

Rating: 
Average: 5 (1 vote)

CSmiRTar

Submitted by ChenLiang on Sun, 09/10/2017 - 16:52

MicroRNAs (miRNAs) are functional RNA molecules which play important roles in the post-transcriptional regulation. miRNAs regulate their target genes by repressing translation or inducing degradation of the target genes' mRNAs. Many databases have been constructed to provide computationally predicted miRNA targets. However, they cannot provide the miRNA targets expressed in a specific tissue and related to a specific disease at the same time. Moreover, they cannot provide the common targets of multiple miRNAs and the common miRNAs of multiple genes at the same time.

Rating: 
Average: 5 (1 vote)

hLGDB

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Lysosomes are cytoplasmic organelles present in almost all eukaryotic cells, which play a fundamental role in key aspects of cellular homeostasis such as membrane repair, autophagy, endocitosis and protein metabolism. The characterization of the genes and enzymes constituting the lysosome represents a central issue to be addressed toward a better understanding of the biology of this organelle. In humans, mutations that cause lysosomal enzyme deficiencies result in >50 different disorders and severe pathologies.

Rating: 
Average: 5 (1 vote)

miR-Synth

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

RNAi is a powerful tool for the regulation of gene expression. It is widely and successfully employed in functional studies and is now emerging as a promising therapeutic approach. Several RNAi-based clinical trials suggest encouraging results in the treatment of a variety of diseases, including cancer. Here we present miR-Synth, a computational resource for the design of synthetic microRNAs able to target multiple genes in multiple sites.

Rating: 
Average: 5 (1 vote)

Antagomirbase

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The accurate prediction of a comprehensive set of messenger putative antagomirs against microRNAs (miRNAs) remains an open problem. In particular, a set of putative antagomirs against human miRNA is predicted in this current version of database. We have developed Antagomir database, based on putative antagomirs-miRNA heterodimers. In this work, the human miRNA dataset was used as template to design putative antagomirs, using GC content and secondary structures as parameters. The algorithm used predicted the free energy of unbound antagomirs.

Rating: 
Average: 5 (1 vote)

findr

Submitted by ChenLiang on Sun, 09/10/2017 - 16:57

Mapping gene expression as a quantitative trait using whole genome-sequencing and transcriptome analysis allows to discover the functional consequences of genetic variation. We developed a novel method and ultra-fast software Findr for higly accurate causal inference between gene expression traits using cis-regulatory DNA variations as causal anchors, which improves current methods by taking into consideration hidden confounders and weak regulations.

Rating: 
Average: 5 (1 vote)

miRMOD

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In the past decade, the microRNAs (miRNAs) have emerged to be important regulators of gene expression across various species. Several studies have confirmed different types of post-transcriptional modifications at terminal ends of miRNAs. The reports indicate that miRNA modifications are conserved and functionally significant as it may affect miRNA stability and ability to bind mRNA targets, hence affecting target gene repression. Next Generation Sequencing (NGS) of the small RNA (sRNA) provides an efficient and reliable method to explore miRNA modifications.

Rating: 
Average: 5 (1 vote)

targetrunningsum

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Identifying key microRNAs (miRNAs) contributing to the genesis and development of a particular disease is a focus of many recent studies. We introduce here a rank-based algorithm to detect miRNA regulatory activity in cancer-derived tissue samples which combines measurements of gene and miRNA expression levels and sequence-based target predictions. The method is designed to detect modest but coordinated changes in the expression of sequence-based predicted target genes.

Rating: 
Average: 5 (1 vote)

BiTargeting

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs (20-24 nts) that can affect gene expression by post-transcriptional regulation of mRNAs. They play important roles in several biological processes (e.g., development and cell cycle regulation). Numerous bioinformatics methods have been developed to identify the function of miRNAs by predicting their target mRNAs. Some viral organisms also encode miRNAs, a fact that contributes to the complex interactions between viruses and their hosts.

Rating: 
Average: 5 (1 vote)

MmPalateMiRNA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) constitute the largest family of noncoding RNAs involved in gene silencing and represent critical regulators of cell and tissue differentiation. Microarray expression profiling of miRNAs is an effective means of acquiring genome-level information of miRNA activation and inhibition, as well as the potential regulatory role that these genes play within a biological system.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Target Prediction