You are here

New support vector machine-based method for microRNA target prediction

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Status:

Platform:

Species:

Pubmed IDs: 
Rating: 
Average: 5 (1 vote)

MicroRNA (miRNA) plays important roles in cell differentiation, proliferation, growth, mobility, and apoptosis. An accurate list of precise target genes is necessary in order to fully understand the importance of miRNAs in animal development and disease. Several computational methods have been proposed for miRNA target-gene identification. However, these methods still have limitations with respect to their sensitivity and accuracy. Thus, we developed a new miRNA target-prediction method based on the support vector machine (SVM) model. The model supplies information of two binding sites (primary and secondary) for a radial basis function kernel as a similarity measure for SVM features. The information is categorized based on structural, thermodynamic, and sequence conservation. Using high-confidence datasets selected from public miRNA target databases, we obtained a human miRNA target SVM classifier model with high performance and provided an efficient tool for human miRNA target gene identification. Experiments have shown that our method is a reliable tool for miRNA target-gene prediction, and a successful application of an SVM classifier. Compared with other methods, the method proposed here improves the sensitivity and accuracy of miRNA prediction. Its performance can be further improved by providing more training examples.[1]


References

  1. New support vector machine-based method for microRNA target prediction.,
    Li, L, Gao Q, Mao X, and Cao Y
    , Genet Mol Res, 2014, Volume 13, Issue 2, p.4165-76, (2014)