You are here

Support Vector Machines (SVM)

In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis. [Source: Wikipedia ]

ptRNApred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Non-coding RNAs (ncRNAs) are known to play important functional roles in the cell. However, their identification and recognition in genomic sequences remains challenging. In silico methods, such as classification tools, offer a fast and reliable way for such screening and multiple classifiers have already been developed to predict well-defined subfamilies of RNA. So far, however, out of all the ncRNAs, only tRNA, miRNA and snoRNA can be predicted with a satisfying sensitivity and specificity.

Rating: 
Average: 5 (1 vote)

SMEpred workbench

Submitted by ChenLiang on Mon, 01/09/2017 - 10:09

Chemical modifications have been extensively exploited to circumvent shortcomings in therapeutic applications of small interfering RNAs (siRNAs). However, experimental designing and testing of these siRNAs or chemically modified siRNAs (cm-siRNAs) involves enormous resources. Therefore, in-silico intervention in designing cm-siRNAs would be of utmost importance. We developed SMEpred workbench to predict the efficacy of normal siRNAs as well as cm-siRNAs using 3031 heterogeneous cm-siRNA sequences from siRNAmod database.

Rating: 
Average: 5 (1 vote)

miRNA-ensemble

Submitted by ChenLiang on Mon, 01/09/2017 - 10:36

Cancer classification has been a crucial topic of research in cancer treatment. In the last decade, messenger RNA (mRNA) expression profiles have been widely used to classify different types of cancers. With the discovery of a new class of small non-coding RNAs; known as microRNAs (miRNAs), various studies have shown that the expression patterns of miRNA can also accurately classify human cancers. Therefore, there is a great demand for the development of machine learning approaches to accurately classify various types of cancers using miRNA expression data.

Rating: 
Average: 5 (1 vote)

SARS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The recognition of microRNA (miRNA)-binding residues in proteins is helpful to understand how miRNAs silence their target genes. It is difficult to use existing computational method to predict miRNA-binding residues in proteins due to the lack of training examples. To address this issue, unlabeled data may be exploited to help construct a computational model. Semisupervised learning deals with methods for exploiting unlabeled data in addition to labeled data automatically to improve learning performance, where no human intervention is assumed.

Rating: 
Average: 5 (1 vote)

FMIMS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) act as a major biomarker of cancer. All miRNAs in human body are not equally important for cancer identification. We propose a methodology, called FMIMS, which automatically selects the most relevant miRNAs for a particular type of cancer. In FMIMS, miRNAs are initially grouped by using a SVM-based algorithm; then the group with highest relevance is determined and the miRNAs in that group are finally ranked for selection according to their redundancy.

Rating: 
5
Average: 4.5 (2 votes)

At_miRNA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs are small, endogenous RNAs found in many different species and are known to have an influence on diverse biological phenomena. They also play crucial roles in plant biological processes, such as metabolism, leaf sidedness and flower development. However, the functional roles of most microRNAs are still unknown. The identification of closely related microRNAs and target genes can be an essential first step towards the discovery of their combinatorial effects on different cellular states.

Rating: 
Average: 5 (1 vote)

New support vector machine-based method for microRNA target prediction

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNA (miRNA) plays important roles in cell differentiation, proliferation, growth, mobility, and apoptosis. An accurate list of precise target genes is necessary in order to fully understand the importance of miRNAs in animal development and disease. Several computational methods have been proposed for miRNA target-gene identification. However, these methods still have limitations with respect to their sensitivity and accuracy. Thus, we developed a new miRNA target-prediction method based on the support vector machine (SVM) model.

Rating: 
Average: 5 (1 vote)

mirnaDetect

Submitted by ChenLiang on Thu, 04/06/2017 - 19:28

MicroRNA (miRNA) plays an important role as a regulator in biological processes. Identification of (pre-)miRNAs helps in understanding regulatory processes. Machine learning methods have been designed for pre-miRNA identification. However, most of them cannot provide reliable predictive performances on independent testing datasets. We assumed this is because the training sets, especially the negative training sets, are not sufficiently representative.

Rating: 
Average: 5 (1 vote)

iBFE

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-throughput biotechnologies have been widely used to characterize clinical samples from various perspectives e.g., epigenomics, genomics and transcriptomics. However, because of the heterogeneity of these technologies and their outputs, individual analysis of the various types of data is hard to create a comprehensive view of disease subtypes. Integrative methods are of pressing need.

Rating: 
5
Average: 5 (1 vote)

mirnanalyze

Submitted by ChenLiang on Thu, 04/06/2017 - 19:32

The current state-of-the-art in cancer diagnosis and treatment is not ideal; diagnostic tests are accurate but invasive, and treatments are "one-size fits-all" instead of being personalized. Recently, miRNA's have garnered significant attention as cancer biomarkers, owing to their ease of access (circulating miRNA in the blood) and stability. There have been many studies showing the effectiveness of miRNA data in diagnosing specific cancer types, but few studies explore the role of miRNA in predicting treatment outcome.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Support Vector Machines (SVM)