You are here

Support Vector Machines (SVM)

In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis. [Source: Wikipedia ]

iMcRNA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Containing about 22 nucleotides, a micro RNA (abbreviated miRNA) is a small non-coding RNA molecule, functioning in transcriptional and post-transcriptional regulation of gene expression. The human genome may encode over 1000 miRNAs. Albeit poorly characterized, miRNAs are widely deemed as important regulators of biological processes. Aberrant expression of miRNAs has been observed in many cancers and other disease states, indicating they are deeply implicated with these diseases, particularly in carcinogenesis.

Rating: 
Average: 5 (1 vote)

miRNA-deKmer

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The microRNA (miRNA), a small non-coding RNA molecule, plays an important role in transcriptional and post-transcriptional regulation of gene expression. Its abnormal expression, however, has been observed in many cancers and other disease states, implying that the miRNA molecules are also deeply involved in these diseases, particularly in carcinogenesis. Therefore, it is important for both basic research and miRNA-based therapy to discriminate the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops).

Rating: 
Average: 5 (1 vote)

RIDDLE

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The growing availability of large-scale functional networks has promoted the development of many successful techniques for predicting functions of genes. Here we extend these network-based principles and techniques to functionally characterize whole sets of genes. We present RIDDLE (Reflective Diffusion and Local Extension), which uses well developed guilt-by-association principles upon a human gene network to identify associations of gene sets.

Rating: 
Average: 5 (1 vote)

netClass

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Predictive, stable and interpretable gene signatures are generally seen as an important step towards a better personalized medicine. During the last decade various methods have been proposed for that purpose. However, one important obstacle for making gene signatures a standard tool in clinics is the typical low reproducibility of signatures combined with the difficulty to achieve a clear biological interpretation. For that purpose in the last years there has been a growing interest in approaches that try to integrate information from molecular interaction networks.

Rating: 
Average: 5 (1 vote)

miRAS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The study of microRNAs (miRNAs) is attracting great considerations. Recent studies revealed that miRNAs play as important regulators of gene expression and some even as cancer players or inhibitors. Many studies try to discover new miRNAs and reveal the miRNA expression profile in cancer using a SAGE-based total RNA clone method. However, the data processing of this method is labor-intensive with several different biological databases and more than ten data processing steps involved.

Rating: 
Average: 5 (1 vote)

ptRNApred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Non-coding RNAs (ncRNAs) are known to play important functional roles in the cell. However, their identification and recognition in genomic sequences remains challenging. In silico methods, such as classification tools, offer a fast and reliable way for such screening and multiple classifiers have already been developed to predict well-defined subfamilies of RNA. So far, however, out of all the ncRNAs, only tRNA, miRNA and snoRNA can be predicted with a satisfying sensitivity and specificity.

Rating: 
Average: 5 (1 vote)

SMEpred workbench

Submitted by ChenLiang on Mon, 01/09/2017 - 10:09

Chemical modifications have been extensively exploited to circumvent shortcomings in therapeutic applications of small interfering RNAs (siRNAs). However, experimental designing and testing of these siRNAs or chemically modified siRNAs (cm-siRNAs) involves enormous resources. Therefore, in-silico intervention in designing cm-siRNAs would be of utmost importance. We developed SMEpred workbench to predict the efficacy of normal siRNAs as well as cm-siRNAs using 3031 heterogeneous cm-siRNA sequences from siRNAmod database.

Rating: 
Average: 5 (1 vote)

iMiRNA-SSF

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The identification of microRNA precursors (pre-miRNAs) helps in understanding regulator in biological processes. The performance of computational predictors depends on their training sets, in which the negative sets play an important role. In this regard, we investigated the influence of benchmark datasets on the predictive performance of computational predictors in the field of miRNA identification, and found that the negative samples have significant impact on the predictive results of various methods.

Rating: 
Average: 5 (1 vote)

SMIRP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The prediction of novel pre-microRNA (miRNA) from genomic sequence has received considerable attention recently. However, the majority of studies have focused on the human genome. Previous studies have demonstrated that sensitivity (correctly detecting true miRNA) is sustained when human-trained methods are applied to other species, however they have failed to report the dramatic drop in specificity (the ability to correctly reject non-miRNA sequences) in non-human genomes.

Rating: 
Average: 5 (1 vote)

Automatic learning of pre-miRNAs from different species

Submitted by ChenLiang on Thu, 04/06/2017 - 17:26

Discovery of microRNAs (miRNAs) relies on predictive models for characteristic features from miRNA precursors (pre-miRNAs). The short length of miRNA genes and the lack of pronounced sequence features complicate this task. To accommodate the peculiarities of plant and animal miRNAs systems, tools for both systems have evolved differently. However, these tools are biased towards the species for which they were primarily developed and, consequently, their predictive performance on data sets from other species of the same kingdom might be lower.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Support Vector Machines (SVM)