You are here

Support Vector Machines (SVM)

In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis. [Source: Wikipedia ]

miRNA-dis

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNA precursor identification is an important task in bioinformatics. Support Vector Machine (SVM) is one of the most effective machine learning methods used in this field. The performance of SVM-based methods depends on the vector representations of RNAs. However, the discriminative power of the existing feature vectors is limited, and many methods lack an interpretable model for analysis of characteristic sequence features.

Rating: 
Average: 5 (1 vote)

iMcRNA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Containing about 22 nucleotides, a micro RNA (abbreviated miRNA) is a small non-coding RNA molecule, functioning in transcriptional and post-transcriptional regulation of gene expression. The human genome may encode over 1000 miRNAs. Albeit poorly characterized, miRNAs are widely deemed as important regulators of biological processes. Aberrant expression of miRNAs has been observed in many cancers and other disease states, indicating they are deeply implicated with these diseases, particularly in carcinogenesis.

Rating: 
Average: 5 (1 vote)

MinDist

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The computational search for novel microRNA (miRNA) precursors often involves some sort of structural analysis with the aim of identifying which type of structures are prone to being recognized and processed by the cellular miRNA-maturation machinery. A natural way to tackle this problem is to perform clustering over the candidate structures along with known miRNA precursor structures. Mixed clusters allow then the identification of candidates that are similar to known precursors.

Rating: 
Average: 5 (1 vote)

IBRel

Submitted by ChenLiang on Thu, 04/06/2017 - 17:55

Many biomedical relation extraction approaches are based on supervised machine learning, requiring an annotated corpus. Distant supervision aims at training a classifier by combining a knowledge base with a corpus, reducing the amount of manual effort necessary. This is particularly useful for biomedicine because many databases and ontologies have been made available for many biological processes, while the availability of annotated corpora is still limited. We studied the extraction of microRNA-gene relations from text.

Rating: 
Average: 5 (1 vote)

LBSizeCleav

Submitted by ChenLiang on Thu, 04/06/2017 - 18:43

Dicer is necessary for the process of mature microRNA (miRNA) formation because the Dicer enzyme cleaves pre-miRNA correctly to generate miRNA with correct seed regions. Nonetheless, the mechanism underlying the selection of a Dicer cleavage site is still not fully understood. To date, several studies have been conducted to solve this problem, for example, a recent discovery indicates that the loop/bulge structure plays a central role in the selection of Dicer cleavage sites.

Rating: 
Average: 5 (1 vote)

chimiRic

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recent technologies like AGO CLIP sequencing and CLASH enable direct transcriptome-wide identification of AGO binding and miRNA target sites, but the most widely used miRNA target prediction algorithms do not exploit these data. Here we use discriminative learning on AGO CLIP and CLASH interactions to train a novel miRNA target prediction model. Our method combines two SVM classifiers, one to predict miRNA-mRNA duplexes and a second to learn a binding model of AGO's local UTR sequence preferences and positional bias in 3'UTR isoforms.

Rating: 
5
Average: 4.5 (2 votes)

Mirnacle

Submitted by ChenLiang on Thu, 04/06/2017 - 19:26

MicroRNAs (miRNAs) are key gene expression regulators in plants and animals. Therefore, miRNAs are involved in several biological processes, making the study of these molecules one of the most relevant topics of molecular biology nowadays. However, characterizing miRNAs in vivo is still a complex task. As a consequence, in silico methods have been developed to predict miRNA loci. A common ab initio strategy to find miRNAs in genomic data is to search for sequences that can fold into the typical hairpin structure of miRNA precursors (pre-miRNAs).

Rating: 
Average: 5 (1 vote)

TargetExpress

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Mammalian genomes encode for thousands of microRNAs, which can potentially regulate the majority of protein-coding genes. They have been implicated in development and disease, leading to great interest in understanding their function, with computational methods being widely used to predict their targets. Most computational methods rely on sequence features, thermodynamics, and conservation filters; essentially scanning the whole transcriptome to predict one set of targets for each microRNA.

Rating: 
Average: 5 (1 vote)

miREE

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Computational methods for microRNA target prediction are a fundamental step to understand the miRNA role in gene regulation, a key process in molecular biology. In this paper we present miREE, a novel microRNA target prediction tool. miREE is an ensemble of two parts entailing complementary but integrated roles in the prediction. The Ab-Initio module leverages upon a genetic algorithmic approach to generate a set of candidate sites on the basis of their microRNA-mRNA duplex stability properties.

Rating: 
Average: 5 (1 vote)

Cepred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Identifying the tissues in which a microRNA is expressed could enhance the understanding of the functions, the biological processes, and the diseases associated with that microRNA. However, the mechanisms of microRNA biogenesis and expression remain largely unclear and the identification of the tissues in which a microRNA is expressed is limited.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Support Vector Machines (SVM)