You are here

Support Vector Machines (SVM)

In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis. [Source: Wikipedia ]

MLSeq

Submitted by ChenLiang on Sun, 09/10/2017 - 17:14

RNA sequencing (RNA-Seq) is a powerful technique for the gene-expression profiling of organisms that uses the capabilities of next-generation sequencing technologies. Developing gene-expression-based classification algorithms is an emerging powerful method for diagnosis, disease classification and monitoring at molecular level, as well as providing potential markers of diseases. Most of the statistical methods proposed for the classification of gene-expression data are either based on a continuous scale (eg. microarray data) or require a normal distribution assumption.

Rating: 
Average: 4 (1 vote)

MicroTarget

Submitted by ChenLiang on Sun, 09/10/2017 - 20:23

MicroRNAs are known to play an essential role in gene regulation in plants and animals. The standard method for understanding microRNA-gene interactions is randomized controlled perturbation experiments. These experiments are costly and time consuming. Therefore, use of computational methods is essential. Currently, several computational methods have been developed to discover microRNA target genes. However, these methods have limitations based on the features that are used for prediction.

Rating: 
Average: 5 (1 vote)

microDoR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

There are two main mechanisms of miRNA-mediated gene silencing: either mRNA degradation or translational repression. However, the precise mechanism of target mRNAs regulated by miRNA remains unclear. As a complementary approach to experiment, a computational method was proposed to recognize the mechanism of miRNA-mediated gene silencing in human. We have analyzed extensive features correlated with miRNA-mediated silencing mechanism of mRNA.

Rating: 
Average: 5 (1 vote)

RNA Editing Plus

Submitted by ChenLiang on Tue, 01/09/2018 - 17:05

Adenosine-to-inosine (A-to-I) editing by adenosine deaminase acting on the RNA (ADAR) proteins is one of the most frequent modifications during post- and co-transcription. To facilitate the assignment of biological functions to specific editing sites, we designed an automatic online platform to annotate A-to-I RNA editing sites in pre-mRNA splicing signals, microRNAs (miRNAs) and miRNA target untranslated regions (3' UTRs) from human (Homo sapiens) high-throughput sequencing data and predict their effects based on large-scale bioinformatic analysis.

Rating: 
Average: 5 (1 vote)

BioSeq-Analysis

Submitted by ChenLiang on Tue, 01/09/2018 - 17:37

With the avalanche of biological sequences generated in the post-genomic age, one of the most challenging problems is how to computationally analyze their structures and functions. Machine learning techniques are playing key roles in this field. Typically, predictors based on machine learning techniques contain three main steps: feature extraction, predictor construction and performance evaluation. Although several Web servers and stand-alone tools have been developed to facilitate the biological sequence analysis, they only focus on individual step.

Rating: 
Average: 5 (1 vote)

sRNATarget

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Accurate prediction of sRNA targets plays a key role in determining sRNA functions. Here we introduced two mathematical models, sRNATargetNB and sRNATargetSVM, for prediction of sRNA targets using Nai ve Bayes method and support vector machines (SVM), respectively. The training dataset was composed of 46 positive samples (real sRNA-targets interaction) and 86 negative samples (no interaction between sRNA and targets). The leave-one-out cross-validation (LOOCV) classification accuracy was 91.67% for sRNATargetNB, and 100.00% for sRNATargetSVM.

Rating: 
Average: 5 (1 vote)

BosFinder

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small non-coding RNAs that modulate gene expression transcriptionally (transcriptional activation or inactivation) and/or post-transcriptionally (translation inhibition or degradation of their target mRNAs). This phenomenon has significant roles in growth and developmental processes in plants and animals. Bos taurus is one of the most important livestock animals, having great importance in food and economical sciences and industries.

Rating: 
Average: 5 (1 vote)

YamiPred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small non-coding RNAs, which play a significant role in gene regulation. Predicting miRNA genes is a challenging bioinformatics problem and existing experimental and computational methods fail to deal with it effectively. We developed YamiPred, an embedded classification method that combines the efficiency and robustness of support vector machines (SVM) with genetic algorithms (GA) for feature selection and parameters optimization.

Rating: 
Average: 5 (1 vote)

MicRooN

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Since Ambros' discovery of small non-protein coding RNAs in the early 1990s, the past two decades have seen an upsurge in the number of reports of predicted microRNAs (miR), which have been implicated in various functions. The correlation of miRs with cancer has spurred the usage of this class of non-coding RNAs in various cancer therapies, although most of them are at trial stages. However, the experimental identification of a miR to be associated with cancer is still an elaborate, time-consuming process.

Rating: 
Average: 5 (1 vote)

microRPM

Submitted by ChenLiang on Tue, 01/09/2018 - 19:29

MicroRNAs (miRNAs) are endogenous non-coding small RNAs (of about 22 nucleotides), which play an important role in the post-transcriptional regulation of gene expression via either mRNA cleavage or translation inhibition. Several machine learning-based approaches have been developed to identify novel miRNAs from next generation sequencing (NGS) data. Typically, precursor/genomic sequences are required as references for most methods. However, the non-availability of genomic sequences is often a limitation in miRNA discovery in non-model plants.

Rating: 
4
Average: 3.5 (2 votes)

Pages

Subscribe to Support Vector Machines (SVM)