You are here

R

R is a programming language and software environment for statistical computing and graphics supported by the R Foundation for Statistical Computing. [Source: Wikipedia ]

iScreen

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well.

Rating: 
Average: 5 (1 vote)

bloodmiRs

Submitted by ChenLiang on Tue, 01/09/2018 - 17:00

With this study, we provide a comprehensive reference dataset of detailed miRNA expression profiles from seven typesof human peripheral blood cells(NK cells, B lymphocytes, cytotoxic T lymphocytes, T helper cells, monocytes, neutrophils and erythrocytes), serum, exosomes and whole blood. The peripheral blood cells from buffy coats were typed and sorted using FACS/MACS. The overall dataset was generated from 450 small RNA libraries using high-throughput sequencing.

Rating: 
Average: 5 (1 vote)

miRSeqNovel

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

We present miRSeqNovel, an R based workflow for miRNA sequencing data analysis. miRSeqNovel can process both colorspace (SOLiD) and basespace (Illumina/Solexa) data by different mapping algorithms. It finds differentially expressed miRNAs and gives conservative prediction of novel miRNA candidates with customized parameters. miRSeqNovel is freely available at http://sourceforge.net/projects/mirseq/files.[1]

Rating: 
Average: 5 (1 vote)

Loregic

Submitted by ChenLiang on Thu, 04/06/2017 - 18:45

The topology of the gene-regulatory network has been extensively analyzed. Now, given the large amount of available functional genomic data, it is possible to go beyond this and systematically study regulatory circuits in terms of logic elements. To this end, we present Loregic, a computational method integrating gene expression and regulatory network data, to characterize the cooperativity of regulatory factors. Loregic uses all 16 possible two-input-one-output logic gates (e.g. AND or XOR) to describe triplets of two factors regulating a common target.

Rating: 
Average: 5 (1 vote)

Director

Submitted by ChenLiang on Tue, 01/09/2018 - 17:47

High-throughput measurement technologies have triggered a rise in large-scale cancer studies containing multiple levels of molecular data. While there are a number of efficient methods to analyze individual data types, there are far less that enhance data interpretation after analysis. We present the R package Director, a dynamic visualization approach to linking and interrogating multiple levels of molecular data after analysis for clinically meaningful, actionable insights.

Rating: 
5
Average: 4.5 (2 votes)

TopKLists

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-throughput sequencing techniques are increasingly affordable and produce massive amounts of data. Together with other high-throughput technologies, such as microarrays, there are an enormous amount of resources in databases. The collection of these valuable data has been routine for more than a decade. Despite different technologies, many experiments share the same goal. For instance, the aims of RNA-seq studies often coincide with those of differential gene expression experiments based on microarrays. As such, it would be logical to utilize all available data.

Rating: 
5
Average: 4.5 (2 votes)

DINGO

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Cancer progression and development are initiated by aberrations in various molecular networks through coordinated changes across multiple genes and pathways. It is important to understand how these networks change under different stress conditions and/or patient-specific groups to infer differential patterns of activation and inhibition. Existing methods are limited to correlation networks that are independently estimated from separate group-specific data and without due consideration of relationships that are conserved across multiple groups.

Rating: 
4
Average: 4 (4 votes)

CePa

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

CePa is an R package aiming to find significant pathways through network topology information. The package has several advantages compared with current pathway enrichment tools. First, pathway node instead of single gene is taken as the basic unit when analysing networks to meet the fact that genes must be constructed into complexes to hold normal functions. Second, multiple network centralities are applied simultaneously to measure importance of nodes from different aspects to make a full view on the biological system.

Rating: 
Average: 5 (1 vote)

CHRONOS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In the era of network medicine and the rapid growth of paired time series mRNA/microRNA expression experiments, there is an urgent need for pathway enrichment analysis methods able to capture the time- and condition-specific 'active parts' of the biological circuitry as well as the microRNA impact. Current methods ignore the multiple dynamical 'themes'-in the form of enriched biologically relevant microRNA-mediated subpathways-that determine the functionality of signaling networks across time.

Rating: 
5
Average: 4.5 (2 votes)

activeMiRNA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Identifying microRNA signatures for the different types and subtypes of cancer can result in improved detection, characterization and understanding of cancer and move us towards more personalized treatment strategies. However, using microRNA's differential expression (tumour versus normal) to determine these signatures may lead to inaccurate predictions and low interpretability because of the noisy nature of miRNA expression data. We present a method for the selection of biologically active microRNAs using gene expression data and microRNA-to-gene interaction network.

Rating: 
Average: 5 (2 votes)

Pages

Subscribe to R