You are here

R

R is a programming language and software environment for statistical computing and graphics supported by the R Foundation for Statistical Computing. [Source: Wikipedia ]

PGS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are short single-stranded non-coding molecules that usually function as negative regulators to silence or suppress gene expression. Owning to the dynamic nature of miRNA and reduced microarray and sequencing costs, a growing number of researchers are now measuring high-dimensional miRNA expression data using repeated or multiple measures in which each individual has more than one sample collected and measured over time.

Rating: 
Average: 5 (1 vote)

Mirnovo

Submitted by ChenLiang on Tue, 01/09/2018 - 19:25

The discovery of microRNAs (miRNAs) remains an important problem, particularly given the growth of high-throughput sequencing, cell sorting and single cell biology. While a large number of miRNAs have already been annotated, there may well be large numbers of miRNAs that are expressed in very particular cell types and remain elusive. Sequencing allows us to quickly and accurately identify the expression of known miRNAs from small RNA-Seq data. The biogenesis of miRNAs leads to very specific characteristics observed in their sequences.

Rating: 
4
Average: 3.5 (2 votes)

mirdba

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In silico generated search for microRNAs (miRNAs) has been driven by methods compiling structural features of the miRNA precursor hairpin, as well as to some degree combining this with the analysis of RNA-seq profiles for which the miRNA typically leave the drosha/dicer fingerprint of 1-2 ~22 nt blocks of reads corresponding to the mature and star miRNA. In complement to the previous methods, we present a study where we systematically exploit these patterns of read profiles.

Rating: 
Average: 5 (1 vote)

PPImiRFS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MiRNAs play a critical role in the response of plants to abiotic and biotic stress. However, the functions of most plant miRNAs remain unknown. Inferring these functions from miRNA functional similarity would thus be useful. This study proposes a new method, called PPImiRFS, for inferring miRNA functional similarity.

Rating: 
Average: 5 (1 vote)

CARD

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

RNAi screens are widely used in functional genomics. Although the screen data can be susceptible to a number of experimental biases, many of these can be corrected by computational analysis. For this purpose, here we have developed a web-based platform for integrated analysis and visualization of RNAi screen data named CARD (for Comprehensive Analysis of RNAi Data; available at https://card.niaid.nih.gov).

Rating: 
Average: 5 (1 vote)

findr

Submitted by ChenLiang on Sun, 09/10/2017 - 16:57

Mapping gene expression as a quantitative trait using whole genome-sequencing and transcriptome analysis allows to discover the functional consequences of genetic variation. We developed a novel method and ultra-fast software Findr for higly accurate causal inference between gene expression traits using cis-regulatory DNA variations as causal anchors, which improves current methods by taking into consideration hidden confounders and weak regulations.

Rating: 
Average: 5 (1 vote)

GBM-BioDP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Validation of clinical biomarkers and response to therapy is a challenging topic in cancer research. An important source of information for virtual validation is the datasets generated from multi-center cancer research projects such as The Cancer Genome Atlas project (TCGA). These data enable investigation of genetic and epigenetic changes responsible for cancer onset and progression, response to cancer therapies, and discovery of the molecular profiles of various cancers.

Rating: 
Average: 5 (1 vote)

SMiRK

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Micro RNAs (miRNAs), important regulators of cell function, can be interrogated by high-throughput sequencing in a rapid and cost-effective manner. However, the tremendous amount of data generated by such methods is not easily analyzed. In order to extract meaningful information and draw biological conclusions from miRNA data, many challenges in quality control, alignment, normalization, and analysis must be overcome. Typically, these would only be possible with the dedicated efforts of a specialized computational biologist for a sustained period of time.

Rating: 
Average: 5 (1 vote)

WSNF

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Identifying cancer subtypes is an important component of the personalised medicine framework. An increasing number of computational methods have been developed to identify cancer subtypes. However, existing methods rarely use information from gene regulatory networks to facilitate the subtype identification. It is widely accepted that gene regulatory networks play crucial roles in understanding the mechanisms of diseases. Different cancer subtypes are likely caused by different regulatory mechanisms.

Rating: 
Average: 5 (1 vote)

MMiRNA-Viewer

Submitted by ChenLiang on Mon, 01/09/2017 - 10:15

BACKGROUND: MicroRNAs (miRNA) are short nucleotides that interact with their target genes through 3' untranslated regions (UTRs). The Cancer Genome Atlas (TCGA) harbors an increasing amount of cancer genome data for both tumor and normal samples. However, there are few visualization tools focusing on concurrently displaying important relationships and attributes between miRNAs and mRNAs of both cancer tumor and normal samples.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to R