You are here

Python

Python is a widely used high-level, general-purpose, interpreted, dynamic programming language. [Source: Wikipedia ]

miRquant

Submitted by ChenLiang on Thu, 04/06/2017 - 19:35

Small non-coding RNAs, in particular microRNAs, are critical for normal physiology and are candidate biomarkers, regulators, and therapeutic targets for a wide variety of diseases. There is an ever-growing interest in the comprehensive and accurate annotation of microRNAs across diverse cell types, conditions, species, and disease states. Highthroughput sequencing technology has emerged as the method of choice for profiling microRNAs.

Rating: 
Average: 5 (1 vote)

MKRMDA

Submitted by ChenLiang on Tue, 01/09/2018 - 18:50

Recently, as the research of microRNA (miRNA) continues, there are plenty of experimental evidences indicating that miRNA could be associated with various human complex diseases development and progression. Hence, it is necessary and urgent to pay more attentions to the relevant study of predicting diseases associated miRNAs, which may be helpful for effective prevention, diagnosis and treatment of human diseases.

Rating: 
Average: 5 (1 vote)

PEpiD

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Epigenetic mechanisms play key roles in initiation and progression of prostate cancer by changing gene expression. The Prostate Epigenetic Database (PEpiD: http://wukong.tongji.edu.cn/pepid) archives the three extensively characterized epigenetic mechanisms DNA methylation, histone modification, and microRNA implicated in prostate cancer of human, mouse, and rat. PEpiD uses a distinct color scheme to present the three types of epigenetic data and provides a user-friendly interface for flexible query.

Rating: 
Average: 5 (1 vote)

SimiRa

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

microRNAs and microRNA-independent RNA-binding proteins are 2 classes of post-transcriptional regulators that have been shown to cooperate in gene-expression regulation. We compared the genome-wide target sets of microRNAs and RBPs identified by recent CLIP-Seq technologies, finding that RBPs have distinct target sets and favor gene interaction network hubs. To identify microRNAs and RBPs with a similar functional context, we developed simiRa, a tool that compares enriched functional categories such as pathways and GO terms.

Rating: 
Average: 5 (1 vote)

BUFET

Submitted by ChenLiang on Sun, 09/10/2017 - 16:46

A group of miRNAs can regulate a biological process by targeting genes involved in the process. The unbiased miRNA functional enrichment analysis is the most precise in silico approach to predict the biological processes that may be regulated by a given miRNA group. However, it is computationally intensive and significantly more expensive than its alternatives.

Rating: 
Average: 5 (1 vote)

AnnoLnc

Submitted by ChenLiang on Mon, 01/09/2017 - 10:27

BACKGROUND: Long noncoding RNAs (lncRNAs) have been shown to play essential roles in almost every important biological process through multiple mechanisms. Although the repertoire of human lncRNAs has rapidly expanded, their biological function and regulation remain largely elusive, calling for a systematic and integrative annotation tool. RESULTS: Here we present AnnoLnc ( http://annolnc.cbi.pku.edu.cn ), a one-stop portal for systematically annotating novel human lncRNAs.

Rating: 
Average: 5 (1 vote)

CSmiRTar

Submitted by ChenLiang on Sun, 09/10/2017 - 16:52

MicroRNAs (miRNAs) are functional RNA molecules which play important roles in the post-transcriptional regulation. miRNAs regulate their target genes by repressing translation or inducing degradation of the target genes' mRNAs. Many databases have been constructed to provide computationally predicted miRNA targets. However, they cannot provide the miRNA targets expressed in a specific tissue and related to a specific disease at the same time. Moreover, they cannot provide the common targets of multiple miRNAs and the common miRNAs of multiple genes at the same time.

Rating: 
Average: 5 (1 vote)

Tiresias

Submitted by ChenLiang on Tue, 01/09/2018 - 19:08

MicroRNAs (miRNAs) are short non-coding RNAs that regulate expression of target messenger RNAs (mRNAs) post-transcriptionally. Understanding the precise regulatory role of miRNAs is of great interest since miRNAs have been shown to play an important role in development, diseases, and other biological processes. Early work on miRNA target prediction has focused on static sequence-driven miRNA-mRNA complementarity. However, recent research also utilizes expression-level data to study context-dependent regulation effects in a more dynamic, physiologically-relevant setting.

Rating: 
Average: 5 (1 vote)

MixMir

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

microRNAs (miRNAs) are a class of ~22nt non-coding RNAs that potentially regulate over 60% of human protein-coding genes. miRNA activity is highly specific, differing between cell types, developmental stages and environmental conditions, so the identification of active miRNAs in a given sample is of great interest. Here we present a novel computational approach for analyzing both mRNA sequence and gene expression data, called MixMir.

Rating: 
Average: 5 (1 vote)

SMiRK

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Micro RNAs (miRNAs), important regulators of cell function, can be interrogated by high-throughput sequencing in a rapid and cost-effective manner. However, the tremendous amount of data generated by such methods is not easily analyzed. In order to extract meaningful information and draw biological conclusions from miRNA data, many challenges in quality control, alignment, normalization, and analysis must be overcome. Typically, these would only be possible with the dedicated efforts of a specialized computational biologist for a sustained period of time.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Python