You are here

Python

Python is a widely used high-level, general-purpose, interpreted, dynamic programming language. [Source: Wikipedia ]

miTRATA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

We describe miTRATA, the first web-based tool for microRNA Truncation and Tailing Analysis--the analysis of 3' modifications of microRNAs including the loss or gain of nucleotides relative to the canonical sequence. miTRATA is implemented in Python (version 3) and employs parallel processing modules to enhance its scalability when analyzing multiple small RNA (sRNA) sequencing datasets. It utilizes miRBase, currently version 21, as a source of known microRNAs for analysis. miTRATA notifies user(s) via email to download as well as visualize the results online.

Rating: 
Average: 4.5 (2 votes)

MicroTarget

Submitted by ChenLiang on Sun, 09/10/2017 - 20:23

MicroRNAs are known to play an essential role in gene regulation in plants and animals. The standard method for understanding microRNA-gene interactions is randomized controlled perturbation experiments. These experiments are costly and time consuming. Therefore, use of computational methods is essential. Currently, several computational methods have been developed to discover microRNA target genes. However, these methods have limitations based on the features that are used for prediction.

Rating: 
Average: 5 (1 vote)

IMOTA

Submitted by ChenLiang on Tue, 01/09/2018 - 17:02

Web repositories for almost all 'omics' types have been generated-detailing the repertoire of representatives across different tissues or cell types. A logical next step is the combination of these valuable sources. With IMOTA (interactive multi omics tissue atlas), we developed a database that includes 23 725 relations between miRNAs and 23 tissues, 310 932 relations between mRNAs and the same tissues as well as 63 043 relations between proteins and the 23 tissues in Homo sapiens. IMOTA also contains data on tissue-specific interactions, e.g.

Rating: 
Average: 5 (1 vote)

RNA Editing Plus

Submitted by ChenLiang on Tue, 01/09/2018 - 17:05

Adenosine-to-inosine (A-to-I) editing by adenosine deaminase acting on the RNA (ADAR) proteins is one of the most frequent modifications during post- and co-transcription. To facilitate the assignment of biological functions to specific editing sites, we designed an automatic online platform to annotate A-to-I RNA editing sites in pre-mRNA splicing signals, microRNAs (miRNAs) and miRNA target untranslated regions (3' UTRs) from human (Homo sapiens) high-throughput sequencing data and predict their effects based on large-scale bioinformatic analysis.

Rating: 
Average: 5 (1 vote)

BioSeq-Analysis

Submitted by ChenLiang on Tue, 01/09/2018 - 17:37

With the avalanche of biological sequences generated in the post-genomic age, one of the most challenging problems is how to computationally analyze their structures and functions. Machine learning techniques are playing key roles in this field. Typically, predictors based on machine learning techniques contain three main steps: feature extraction, predictor construction and performance evaluation. Although several Web servers and stand-alone tools have been developed to facilitate the biological sequence analysis, they only focus on individual step.

Rating: 
Average: 5 (1 vote)

RDDpred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

RNA-editing is an important post-transcriptional RNA sequence modification performed by two catalytic enzymes, "ADAR"(A-to-I) and "APOBEC"(C-to-U). By utilizing high-throughput sequencing technologies, the biological function of RNA-editing has been actively investigated. Currently, RNA-editing is considered to be a key regulator that controls various cellular functions, such as protein activity, alternative splicing pattern of mRNA, and substitution of miRNA targeting site.

Rating: 
Average: 5 (1 vote)

CCmiR

Submitted by ChenLiang on Tue, 01/09/2018 - 17:39

The identification of microRNA (miRNA) target sites is important. In the past decade, dozens of computational methods have been developed to predict miRNA target sites. Despite their existence, rarely does a method consider the well-known competition and cooperation among miRNAs when attempts to discover target sites. To fill this gap, we developed a new approach called CCmiR, which takes the cooperation and competition of multiple miRNAs into account in a statistical model to predict their target sites.

Rating: 
Average: 5 (1 vote)

GenoSkyline

Submitted by ChenLiang on Fri, 10/21/2016 - 16:22

Extensive efforts have been made to understand genomic function through both experimental and computational approaches, yet proper annotation still remains challenging, especially in non-coding regions. In this manuscript, we introduce GenoSkyline, an unsupervised learning framework to predict tissue-specific functional regions through integrating high-throughput epigenetic annotations. GenoSkyline successfully identified a variety of non-coding regulatory machinery including enhancers, regulatory miRNA, and hypomethylated transposable elements in extensive case studies.

Rating: 
Average: 5 (1 vote)

miRCarta

Submitted by ChenLiang on Tue, 01/09/2018 - 18:46

The continuous increase of available biological data as consequence of modern high-throughput technologies poses new challenges for analysis techniques and database applications. Especially for miRNAs, one class of small non-coding RNAs, many algorithms have been developed to predict new candidates from next-generation sequencing data. While the amount of publications describing novel miRNA candidates keeps steadily increasing, the current gold standard database for miRNAs - miRBase - has not been updated since June 2014.

Rating: 
Average: 5 (1 vote)

OmniSearch

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

As a special class of non-coding RNAs (ncRNAs), microRNAs (miRNAs) perform important roles in numerous biological and pathological processes. The realization of miRNA functions depends largely on how miRNAs regulate specific target genes. It is therefore critical to identify, analyze, and cross-reference miRNA-target interactions to better explore and delineate miRNA functions. Semantic technologies can help in this regard.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Python