You are here

Python

Python is a widely used high-level, general-purpose, interpreted, dynamic programming language. [Source: Wikipedia ]

findr

Submitted by ChenLiang on Sun, 09/10/2017 - 16:57

Mapping gene expression as a quantitative trait using whole genome-sequencing and transcriptome analysis allows to discover the functional consequences of genetic variation. We developed a novel method and ultra-fast software Findr for higly accurate causal inference between gene expression traits using cis-regulatory DNA variations as causal anchors, which improves current methods by taking into consideration hidden confounders and weak regulations.

Rating: 
Average: 5 (1 vote)

Mirnovo

Submitted by ChenLiang on Tue, 01/09/2018 - 19:25

The discovery of microRNAs (miRNAs) remains an important problem, particularly given the growth of high-throughput sequencing, cell sorting and single cell biology. While a large number of miRNAs have already been annotated, there may well be large numbers of miRNAs that are expressed in very particular cell types and remain elusive. Sequencing allows us to quickly and accurately identify the expression of known miRNAs from small RNA-Seq data. The biogenesis of miRNAs leads to very specific characteristics observed in their sequences.

Rating: 
4
Average: 3.5 (2 votes)

TarPmiR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The identification of microRNA (miRNA) target sites is fundamentally important for studying gene regulation. There are dozens of computational methods available for miRNA target site prediction. Despite their existence, we still cannot reliably identify miRNA target sites, partially due to our limited understanding of the characteristics of miRNA target sites.

Rating: 
Average: 5 (1 vote)

Automatic learning of pre-miRNAs from different species

Submitted by ChenLiang on Thu, 04/06/2017 - 17:26

Discovery of microRNAs (miRNAs) relies on predictive models for characteristic features from miRNA precursors (pre-miRNAs). The short length of miRNA genes and the lack of pronounced sequence features complicate this task. To accommodate the peculiarities of plant and animal miRNAs systems, tools for both systems have evolved differently. However, these tools are biased towards the species for which they were primarily developed and, consequently, their predictive performance on data sets from other species of the same kingdom might be lower.

Rating: 
Average: 5 (1 vote)

iDeep

Submitted by ChenLiang on Sun, 09/10/2017 - 17:07

RNAs play key roles in cells through the interactions with proteins known as the RNA-binding proteins (RBP) and their binding motifs enable crucial understanding of the post-transcriptional regulation of RNAs. How the RBPs correctly recognize the target RNAs and why they bind specific positions is still far from clear. Machine learning-based algorithms are widely acknowledged to be capable of speeding up this process. Although many automatic tools have been developed to predict the RNA-protein binding sites from the rapidly growing multi-resource data, e.g.

Rating: 
Average: 5 (1 vote)

chimiRic

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recent technologies like AGO CLIP sequencing and CLASH enable direct transcriptome-wide identification of AGO binding and miRNA target sites, but the most widely used miRNA target prediction algorithms do not exploit these data. Here we use discriminative learning on AGO CLIP and CLASH interactions to train a novel miRNA target prediction model. Our method combines two SVM classifiers, one to predict miRNA-mRNA duplexes and a second to learn a binding model of AGO's local UTR sequence preferences and positional bias in 3'UTR isoforms.

Rating: 
5
Average: 4.5 (2 votes)

RegNetwork

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Transcriptional and post-transcriptional regulation of gene expression is of fundamental importance to numerous biological processes. Nowadays, an increasing amount of gene regulatory relationships have been documented in various databases and literature. However, to more efficiently exploit such knowledge for biomedical research and applications, it is necessary to construct a genome-wide regulatory network database to integrate the information on gene regulatory relationships that are widely scattered in many different places.

Rating: 
Average: 5 (1 vote)

IBRel

Submitted by ChenLiang on Thu, 04/06/2017 - 17:55

Many biomedical relation extraction approaches are based on supervised machine learning, requiring an annotated corpus. Distant supervision aims at training a classifier by combining a knowledge base with a corpus, reducing the amount of manual effort necessary. This is particularly useful for biomedicine because many databases and ontologies have been made available for many biological processes, while the availability of annotated corpora is still limited. We studied the extraction of microRNA-gene relations from text.

Rating: 
Average: 5 (1 vote)

Vicinal

Submitted by ChenLiang on Sun, 09/10/2017 - 20:21

Non-coding (nc)RNAs are important structural and regulatory molecules. Accurate determination of the primary sequence and secondary structure of ncRNAs is important for understanding their functions. During cDNA synthesis, RNA 3' end stem-loops can self-prime reverse transcription, creating RNA-cDNA chimeras. We found that chimeric RNA-cDNA fragments can also be detected at 5' end stem-loops, although at much lower frequency.

Rating: 
Average: 5 (1 vote)

rna-wl

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Thermodynamics-based dynamic programming RNA secondary structure algorithms have been of immense importance in molecular biology, where applications range from the detection of novel selenoproteins using expressed sequence tag (EST) data, to the determination of microRNA genes and their targets. Dynamic programming algorithms have been developed to compute the minimum free energy secondary structure and partition function of a given RNA sequence, the minimum free-energy and partition function for the hybridization of two RNA molecules, etc.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Python