You are here

Python

Python is a widely used high-level, general-purpose, interpreted, dynamic programming language. [Source: Wikipedia ]

CSmiRTar

Submitted by ChenLiang on Sun, 09/10/2017 - 16:52

MicroRNAs (miRNAs) are functional RNA molecules which play important roles in the post-transcriptional regulation. miRNAs regulate their target genes by repressing translation or inducing degradation of the target genes' mRNAs. Many databases have been constructed to provide computationally predicted miRNA targets. However, they cannot provide the miRNA targets expressed in a specific tissue and related to a specific disease at the same time. Moreover, they cannot provide the common targets of multiple miRNAs and the common miRNAs of multiple genes at the same time.

Rating: 
Average: 5 (1 vote)

Tiresias

Submitted by ChenLiang on Tue, 01/09/2018 - 19:08

MicroRNAs (miRNAs) are short non-coding RNAs that regulate expression of target messenger RNAs (mRNAs) post-transcriptionally. Understanding the precise regulatory role of miRNAs is of great interest since miRNAs have been shown to play an important role in development, diseases, and other biological processes. Early work on miRNA target prediction has focused on static sequence-driven miRNA-mRNA complementarity. However, recent research also utilizes expression-level data to study context-dependent regulation effects in a more dynamic, physiologically-relevant setting.

Rating: 
Average: 5 (1 vote)

MixMir

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

microRNAs (miRNAs) are a class of ~22nt non-coding RNAs that potentially regulate over 60% of human protein-coding genes. miRNA activity is highly specific, differing between cell types, developmental stages and environmental conditions, so the identification of active miRNAs in a given sample is of great interest. Here we present a novel computational approach for analyzing both mRNA sequence and gene expression data, called MixMir.

Rating: 
Average: 5 (1 vote)

SMiRK

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Micro RNAs (miRNAs), important regulators of cell function, can be interrogated by high-throughput sequencing in a rapid and cost-effective manner. However, the tremendous amount of data generated by such methods is not easily analyzed. In order to extract meaningful information and draw biological conclusions from miRNA data, many challenges in quality control, alignment, normalization, and analysis must be overcome. Typically, these would only be possible with the dedicated efforts of a specialized computational biologist for a sustained period of time.

Rating: 
Average: 5 (1 vote)

LMMEL-miR-miner

Submitted by ChenLiang on Mon, 01/09/2017 - 10:31

BACKGROUND: In many cancers, microRNAs (miRs) contribute to metastatic progression by modulating phenotypic reprogramming processes such as epithelial-mesenchymal plasticity. This can be driven by miRs targeting multiple mRNA transcripts, inducing regulated changes across large sets of genes. The miR-target databases TargetScan and DIANA-microT predict putative relationships by examining sequence complementarity between miRs and mRNAs.

Rating: 
Average: 5 (1 vote)

miRCluster

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Since the initial annotation of microRNAs (miRNAs) in 2001, many studies have sought to identify additional miRNAs experimentally or computationally in various species. MiRNAs act with the Argonaut family of proteins to regulate target messenger RNAs (mRNAs) post-transcriptionally. Currently, researches mainly focus on single miRNA function study.

Rating: 
Average: 5 (1 vote)

findr

Submitted by ChenLiang on Sun, 09/10/2017 - 16:57

Mapping gene expression as a quantitative trait using whole genome-sequencing and transcriptome analysis allows to discover the functional consequences of genetic variation. We developed a novel method and ultra-fast software Findr for higly accurate causal inference between gene expression traits using cis-regulatory DNA variations as causal anchors, which improves current methods by taking into consideration hidden confounders and weak regulations.

Rating: 
Average: 5 (1 vote)

Mirnovo

Submitted by ChenLiang on Tue, 01/09/2018 - 19:25

The discovery of microRNAs (miRNAs) remains an important problem, particularly given the growth of high-throughput sequencing, cell sorting and single cell biology. While a large number of miRNAs have already been annotated, there may well be large numbers of miRNAs that are expressed in very particular cell types and remain elusive. Sequencing allows us to quickly and accurately identify the expression of known miRNAs from small RNA-Seq data. The biogenesis of miRNAs leads to very specific characteristics observed in their sequences.

Rating: 
4
Average: 3.5 (2 votes)

TarPmiR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The identification of microRNA (miRNA) target sites is fundamentally important for studying gene regulation. There are dozens of computational methods available for miRNA target site prediction. Despite their existence, we still cannot reliably identify miRNA target sites, partially due to our limited understanding of the characteristics of miRNA target sites.

Rating: 
Average: 5 (1 vote)

Automatic learning of pre-miRNAs from different species

Submitted by ChenLiang on Thu, 04/06/2017 - 17:26

Discovery of microRNAs (miRNAs) relies on predictive models for characteristic features from miRNA precursors (pre-miRNAs). The short length of miRNA genes and the lack of pronounced sequence features complicate this task. To accommodate the peculiarities of plant and animal miRNAs systems, tools for both systems have evolved differently. However, these tools are biased towards the species for which they were primarily developed and, consequently, their predictive performance on data sets from other species of the same kingdom might be lower.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Python