You are here

MAC OS

SnoReport

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Unlike tRNAs and microRNAs, both classes of snoRNAs, which direct two distinct types of chemical modifications of uracil residues, have proved to be surprisingly difficult to find in genomic sequences. Most computational approaches so far have explicitly used the fact that snoRNAs predominantly target ribosomal RNAs and spliceosomal RNAs. The target is specified by a short stretch of sequence complementarity between the snoRNA and its target.

Rating: 
Average: 5 (1 vote)

MIReNA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are a class of endogenes derived from a precursor (pre-miRNA) and involved in post-transcriptional regulation. Experimental identification of novel miRNAs is difficult because they are often transcribed under specific conditions and cell types. Several computational methods were developed to detect new miRNAs starting from known ones or from deep sequencing data, and to validate their pre-miRNAs.

Rating: 
Average: 5 (1 vote)

mirnasvm

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are a group of short (approximately 22 nt) non-coding RNAs that play important regulatory roles. MiRNA precursors (pre-miRNAs) are characterized by their hairpin structures. However, a large amount of similar hairpins can be folded in many genomes. Almost all current methods for computational prediction of miRNAs use comparative genomic approaches to identify putative pre-miRNAs from candidate hairpins. Ab initio method for distinguishing pre-miRNAs from sequence segments with pre-miRNA-like hairpin structures is lacking.

Rating: 
Average: 5 (1 vote)

TargetSpy

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Virtually all currently available microRNA target site prediction algorithms require the presence of a (conserved) seed match to the 5' end of the microRNA. Recently however, it has been shown that this requirement might be too stringent, leading to a substantial number of missed target sites.

Rating: 
Average: 5 (1 vote)

miRNA Precursor Candidates for Arabidopsis thaliana

Submitted by ChenLiang on Tue, 01/09/2018 - 18:48

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression in animals and plants. Comparative genomic computational methods have been developed to predict new miRNAs in worms, flies, and humans. Here, we present a novel single genome approach for the detection of miRNAs in Arabidopsis thaliana. This was initiated by producing a candidate miRNA-target data set using an algorithm called findMiRNA, which predicts potential miRNAs within candidate precursor sequences that have corresponding target sites within transcripts.

Rating: 
Average: 5 (1 vote)

GenMiR++

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

We demonstrate that paired expression profiles of microRNAs (miRNAs) and mRNAs can be used to identify functional miRNA-target relationships with high precision. We used a Bayesian data analysis algorithm, GenMiR++, to identify a network of 1,597 high-confidence target predictions for 104 human miRNAs, which was supported by RNA expression data across 88 tissues and cell types, sequence complementarity and comparative genomics data.

Rating: 
Average: 5 (1 vote)

SVMicrO

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing.

Rating: 
Average: 5 (1 vote)

MicroMUMMIE

Submitted by ChenLiang on Sun, 09/10/2017 - 20:22

High-throughput sequencing has opened numerous possibilities for the identification of regulatory RNA-binding events. Cross-linking and immunoprecipitation of Argonaute proteins can pinpoint a microRNA (miRNA) target site within tens of bases but leaves the identity of the miRNA unresolved. A flexible computational framework, microMUMMIE, integrates sequence with cross-linking features and reliably identifies the miRNA family involved in each binding event.

Rating: 
Average: 5 (1 vote)

miPred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

To distinguish the real pre-miRNAs from other hairpin sequences with similar stem-loops (pseudo pre-miRNAs), a hybrid feature which consists of local contiguous structure-sequence composition, minimum of free energy (MFE) of the secondary structure and P-value of randomization test is used. Besides, a novel machine-learning algorithm, random forest (RF), is introduced. The results suggest that our method predicts at 98.21% specificity and 95.09% sensitivity.

Rating: 
Average: 5 (1 vote)

mirTools

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

miRNAs are small, non-coding RNA that negatively regulate gene expression at post-transcriptional level, which play crucial roles in various physiological and pathological processes, such as development and tumorigenesis. Although deep sequencing technologies have been applied to investigate various small RNA transcriptomes, their computational methods are far away from maturation as compared to microarray-based approaches. In this study, a comprehensive web server mirTools was developed to allow researchers to comprehensively characterize small RNA transcriptome.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to MAC OS