You are here

Linux/Unix

FlaiMapper

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recent discoveries show that most types of small non-coding RNAs (sncRNAs) such as miRNAs, snoRNAs and tRNAs get further processed into putatively active smaller RNA species. Their roles, genetic profiles and underlying processing mechanisms are only partially understood. To find their quantities and characteristics, a proper annotation is essential. Here, we present FlaiMapper, a method that extracts and annotates the locations of sncRNA-derived RNAs (sncdRNAs). These sncdRNAs are often detected in sequencing data and observed as fragments of their precursor sncRNA.

Rating: 
Average: 5 (1 vote)

miRtest

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Expression levels of mRNAs are among other factors regulated by microRNAs. A particular microRNA can bind specifically to several target mRNAs and lead to their degradation. Expression levels of both, mRNAs and microRNAs, can be obtained by microarray experiments. In order to increase the power of detecting microRNAs that are differentially expressed between two different groups of samples, we incorporate expression levels of their related target gene sets.

Rating: 
Average: 5 (1 vote)

HuntMi

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Machine learning techniques are known to be a powerful way of distinguishing microRNA hairpins from pseudo hairpins and have been applied in a number of recognised miRNA search tools. However, many current methods based on machine learning suffer from some drawbacks, including not addressing the class imbalance problem properly. It may lead to overlearning the majority class and/or incorrect assessment of classification performance. Moreover, those tools are effective for a narrow range of species, usually the model ones.

Rating: 
Average: 5 (1 vote)

MTide

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Small RNA sequencing and degradome sequencing (also known as parallel analysis of RNA ends) have provided rich information on the microRNA (miRNA) and its cleaved mRNA targets on a genome-wide scale in plants, but no computational tools have been developed to effectively and conveniently deconvolute the miRNA-target interaction (MTI).

Rating: 
Average: 5 (1 vote)

ISMARA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Accurate reconstruction of the regulatory networks that control gene expression is one of the key current challenges in molecular biology. Although gene expression and chromatin state dynamics are ultimately encoded by constellations of binding sites recognized by regulators such as transcriptions factors (TFs) and microRNAs (miRNAs), our understanding of this regulatory code and its context-dependent read-out remains very limited.

Rating: 
Average: 5 (1 vote)

SeqTrimMap

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Deep sequencing provides inexpensive opportunities to characterize the transcriptional diversity of known genomes. The AB SOLiD technology generates millions of short sequencing reads in color-space; that is, the raw data is a sequence of colors, where each color represents 2 nt and each nucleotide is represented by two consecutive colors. This strategy is purported to have several advantages, including increased ability to distinguish sequencing errors from polymorphisms. Several programs have been developed to map short reads to genomes in color space.

Rating: 
Average: 5 (1 vote)

self-containment index calculation

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

RNA molecules will tend to adopt a folded conformation through the pairing of bases on a single strand; the resulting so-called secondary structure is critical to the function of many types of RNA. The secondary structure of a particular substring of functional RNA may depend on its surrounding sequence. Yet, some RNAs such as microRNAs retain their specific structures during biogenesis, which involves extraction of the substructure from a larger structural context, while other functional RNAs may be composed of a fusion of independent substructures.

Rating: 
Average: 5 (1 vote)

sPARTA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Parallel analysis of RNA ends (PARE) is a technique utilizing high-throughput sequencing to profile uncapped, mRNA cleavage or decay products on a genome-wide basis. Tools currently available to validate miRNA targets using PARE data employ only annotated genes, whereas important targets may be found in unannotated genomic regions. To handle such cases and to scale to the growing availability of PARE data and genomes, we developed a new tool, 'sPARTA' (small RNA-PARE target analyzer) that utilizes a built-in, plant-focused target prediction module (aka 'miRferno').

Rating: 
Average: 5 (1 vote)

PAREsnip

Submitted by ChenLiang on Sun, 09/10/2017 - 16:28

Small RNAs (sRNAs) are a class of short (20-25nt) non-coding RNAs that play important regulatory roles in gene expression. An essential first step in understanding their function is to confidently identify sRNA targets. In plants, several classes of sRNAs such as microRNAs (miRNAs) and trans-acting small interfering RNAs have been shown to bind with near-perfect complementarity to their messenger RNA (mRNA) targets, generally leading to cleavage of the mRNA.

Rating: 
Average: 5 (1 vote)

miREvo

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small (~19-24nt) non-coding RNAs that play important roles in various biological processes. To date, the next-generation sequencing (NGS) technology has been widely used to discover miRNAs in plants and animals. Although evolutionary analysis is important to reveal the functional dynamics of miRNAs, few computational tools have been developed to analyze the evolution of miRNA sequence and expression across species, especially the newly emerged ones,

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Linux/Unix