You are here

Linux/Unix

isomiR-Benchmark

Submitted by ChenLiang on Sun, 09/10/2017 - 17:10

MicroRNAs carry out post-transcriptional gene regulation in animals by binding to the 3' untranslated regions of mRNAs, causing their degradation or translational repression. MicroRNAs influence many biological functions, and dysregulation can therefore disrupt development or even cause death. High-throughput sequencing and the mining of animal small RNA data has shown that microRNA genes can yield differentially expressed isoforms, known as isomiRs.

Rating: 
Average: 5 (1 vote)

BiTargeting

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs (20-24 nts) that can affect gene expression by post-transcriptional regulation of mRNAs. They play important roles in several biological processes (e.g., development and cell cycle regulation). Numerous bioinformatics methods have been developed to identify the function of miRNAs by predicting their target mRNAs. Some viral organisms also encode miRNAs, a fact that contributes to the complex interactions between viruses and their hosts.

Rating: 
Average: 5 (1 vote)

SubmiRine

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) regulate gene expression by binding to partially complementary sequences on target mRNA transcripts, thereby causing their degradation, deadenylation, or inhibiting their translation. Genomic variants can alter miRNA regulation by modifying miRNA target sites, and multiple human disease phenotypes have been linked to such miRNA target site variants (miR-TSVs).

Rating: 
Average: 5 (1 vote)

BCGSC miRNA Profiling Pipeline

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The comprehensive multiplatform genomics data generated by The Cancer Genome Atlas (TCGA) Research Network is an enabling resource for cancer research. It includes an unprecedented amount of microRNA sequence data: ~11 000 libraries across 33 cancer types. Combined with initiatives like the National Cancer Institute Genomics Cloud Pilots, such data resources will make intensive analysis of large-scale cancer genomics data widely accessible.

Rating: 
Average: 5 (1 vote)

miRVaS

Submitted by ChenLiang on Mon, 10/24/2016 - 23:12

Genetic variants in or near miRNA genes can have profound effects on miRNA expression and targeting. As user-friendly software for the impact prediction of miRNA variants on a large scale is still lacking, we created a tool called miRVaS. miRVaS automates this prediction by annotating the location of the variant relative to functional regions within the miRNA hairpin (seed, mature, loop, hairpin arm, flanks) and by annotating all predicted structural changes within the miRNA due to the variant.

Rating: 
5
Average: 5 (2 votes)

TPS

Submitted by ChenLiang on Thu, 04/06/2017 - 19:14

Biological systems are increasingly being studied by high throughput profiling of molecular data over time. Determining the set of time points to sample in studies that profile several different types of molecular data is still challenging. Here we present the Time Point Selection (TPS) method that solves this combinatorial problem in a principled and practical way. TPS utilizes expression data from a small set of genes sampled at a high rate.

Rating: 
Average: 5 (1 vote)

isomiR2Function

Submitted by ChenLiang on Sun, 09/10/2017 - 17:11

In plants, post transcriptional regulation by non-coding RNAs (ncRNAs), in particular miRNAs (19-24 nt) has been involved in modulating the transcriptional landscape in developmental, biotic and abiotic interactions. In past few years, considerable focus has been leveraged on delineating and deciphering the role of miRNAs and their canonical isomiRs in plants. However, proper classification and accurate prediction of plant isomiRs taking into account the relative features by which we define isomiRs, such as templated or non-templated is still lacking.

Rating: 
Average: 5 (1 vote)

RWRMTN

Submitted by ChenLiang on Tue, 01/09/2018 - 19:02

MicroRNAs (miRNAs) have been shown to play an important role in pathological initiation, progression and maintenance. Because identification in the laboratory of disease-related miRNAs is not straightforward, numerous network-based methods have been developed to predict novel miRNAs in silico. Homogeneous networks (in which every node is a miRNA) based on the targets shared between miRNAs have been widely used to predict their role in disease phenotypes.

Rating: 
Average: 5 (1 vote)

miRcomp

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Several techniques have been tailored to the quantification of microRNA expression, including hybridization arrays, quantitative PCR (qPCR), and high-throughput sequencing. Each of these has certain strengths and limitations depending both on the technology itself and the algorithm used to convert raw data into expression estimates. Reliable quantification of microRNA expression is challenging in part due to the relatively low abundance and short length of the miRNAs.

Rating: 
Average: 5 (1 vote)

MinDist

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The computational search for novel microRNA (miRNA) precursors often involves some sort of structural analysis with the aim of identifying which type of structures are prone to being recognized and processed by the cellular miRNA-maturation machinery. A natural way to tackle this problem is to perform clustering over the candidate structures along with known miRNA precursor structures. Mixed clusters allow then the identification of candidates that are similar to known precursors.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Linux/Unix