You are here

miRNA Prediction

ComiR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are post-transcriptional regulators that bind to their target mRNAs through base complementarity. Predicting miRNA targets is a challenging task and various studies showed that existing algorithms suffer from high number of false predictions and low to moderate overlap in their predictions. Until recently, very few algorithms considered the dynamic nature of the interactions, including the effect of less specific interactions, the miRNA expression level, and the effect of combinatorial miRNA binding.

Rating: 
Average: 5 (1 vote)

SSCprofiler

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The majority of existing computational tools rely on sequence homology and/or structural similarity to identify novel microRNA (miRNA) genes. Recently supervised algorithms are utilized to address this problem, taking into account sequence, structure and comparative genomics information. In most of these studies miRNA gene predictions are rarely supported by experimental evidence and prediction accuracy remains uncertain.

Rating: 
Average: 5 (1 vote)

Revealing posttranscriptional regulatory elements through network-level conservation

Submitted by ChenLiang on Tue, 01/09/2018 - 18:58

We used network-level conservation between pairs of fly (Drosophila melanogaster/D. pseudoobscura) and worm (Caenorhabditis elegans/C. briggsae) genomes to detect highly conserved mRNA motifs in 3' untranslated regions. Many of these elements are complementary to the 5' extremity of known microRNAs (miRNAs), and likely correspond to their target sites. We also identify known targets of RNA-binding proteins, and many novel sites not yet known to be functional.

Rating: 
Average: 5 (1 vote)

MaturePred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are a set of short (19~24 nt) non-coding RNAs that play significant roles as posttranscriptional regulators in animals and plants. The ab initio prediction methods show excellent performance for discovering new pre-miRNAs. While most of these methods can distinguish real pre-miRNAs from pseudo pre-miRNAs, few can predict the positions of miRNAs. Among the existing methods that can also predict the miRNA positions, most of them are designed for mammalian miRNAs, including human and mouse. Minority of methods can predict the positions of plant miRNAs.

Rating: 
Average: 5 (1 vote)

CoRAL

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The surprising observation that virtually the entire human genome is transcribed means we know little about the function of many emerging classes of RNAs, except their astounding diversities. Traditional RNA function prediction methods rely on sequence or alignment information, which are limited in their abilities to classify the various collections of non-coding RNAs (ncRNAs). To address this, we developed Classification of RNAs by Analysis of Length (CoRAL), a machine learning-based approach for classification of RNA molecules.

Rating: 
Average: 5 (1 vote)

MiRdup

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are short RNA species derived from hairpin-forming miRNA precursors (pre-miRNA) and acting as key posttranscriptional regulators. Most computational tools labeled as miRNA predictors are in fact pre-miRNA predictors and provide no information about the putative miRNA location within the pre-miRNA. Sequence and structural features that determine the location of the miRNA, and the extent to which these properties vary from species to species, are poorly understood.

Rating: 
Average: 5 (1 vote)

PlantMiRNAPred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are a set of short (21-24 nt) non-coding RNAs that play significant roles as post-transcriptional regulators in animals and plants. While some existing methods use comparative genomic approaches to identify plant precursor miRNAs (pre-miRNAs), others are based on the complementarity characteristics between miRNAs and their target mRNAs sequences. However, they can only identify the homologous miRNAs or the limited complementary miRNAs.

Rating: 
Average: 5 (1 vote)

HuntMi

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Machine learning techniques are known to be a powerful way of distinguishing microRNA hairpins from pseudo hairpins and have been applied in a number of recognised miRNA search tools. However, many current methods based on machine learning suffer from some drawbacks, including not addressing the class imbalance problem properly. It may lead to overlearning the majority class and/or incorrect assessment of classification performance. Moreover, those tools are effective for a narrow range of species, usually the model ones.

Rating: 
Average: 5 (1 vote)

MTide

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Small RNA sequencing and degradome sequencing (also known as parallel analysis of RNA ends) have provided rich information on the microRNA (miRNA) and its cleaved mRNA targets on a genome-wide scale in plants, but no computational tools have been developed to effectively and conveniently deconvolute the miRNA-target interaction (MTI).

Rating: 
Average: 5 (1 vote)

MiRmat

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs are known to be generated from primary transcripts mainly through the sequential cleavages by two enzymes, Drosha and Dicer. The sequence of a mature microRNA, especially the 'seeding sequence', largely determines its binding ability and specificity to target mRNAs. Therefore, methods that predict mature microRNA sequences with high accuracy will benefit the identification and characterization of novel microRNAs and their targets, and contribute to inferring the post-transcriptional regulation network at a genome scale.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to miRNA Prediction