You are here

MATLAB

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. [Source: Wikipedia ]

FMIGS

Submitted by ChenLiang on Sun, 09/10/2017 - 17:05

MicroRNAs (miRNA) are one of the important regulators of cell division and also responsible for cancer development. Among the discovered miRNAs, not all are important for cancer detection. In this regard a fuzzy mutual information (FMI) based grouping and miRNA selection method (FMIGS) is developed to identify the miRNAs responsible for a particular cancer. First, the miRNAs are ranked and divided into several groups. Then the most important group is selected among the generated groups.

Rating: 
Average: 5 (1 vote)

GRNMF

Submitted by ChenLiang on Tue, 01/09/2018 - 17:03

MicroRNAs (miRNAs) play crucial roles in post-transcriptional regulations and various cellular processes. The identification of disease-related miRNAs provides great insights into the underlying pathogenesis of diseases at a system level. However, most existing computational approaches are biased towards known miRNA-disease associations, which is inappropriate for those new diseases or miRNAs without any known association information.

Rating: 
Average: 5 (1 vote)

DMTHNDM

Submitted by ChenLiang on Tue, 01/09/2018 - 17:18

MicroRNAs (miRNAs), as a kind of important small endogenous single-stranded non-coding RNA, play critical roles in a large number of human diseases. However, the currently known experimental verifications of the disease-miRNA associations are still rare and experimental identification is time-consuming and labor-intensive. Accordingly, identifying potential disease-related miRNAs to help people understand the pathogenesis of complex diseases has become a hot topic.

Rating: 
Average: 5 (1 vote)

EPLMI

Submitted by ChenLiang on Tue, 01/09/2018 - 17:50

The interaction of miRNA and lncRNA is known to be important for gene regulations. However, not many computational approaches have been developed to analyse known interactions and predict the unknown ones. Given that there are now more evidences that suggest that lncRNA-miRNA interactions are closely related to their relative expression levels in the form of a titration mechanism, we analyzed the patterns in large-scale expression profiles of known lncRNA-miRNA interactions.

Rating: 
Average: 5 (1 vote)

YamiPred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small non-coding RNAs, which play a significant role in gene regulation. Predicting miRNA genes is a challenging bioinformatics problem and existing experimental and computational methods fail to deal with it effectively. We developed YamiPred, an embedded classification method that combines the efficiency and robustness of support vector machines (SVM) with genetic algorithms (GA) for feature selection and parameters optimization.

Rating: 
Average: 5 (1 vote)

FMIMS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) act as a major biomarker of cancer. All miRNAs in human body are not equally important for cancer identification. We propose a methodology, called FMIMS, which automatically selects the most relevant miRNAs for a particular type of cancer. In FMIMS, miRNAs are initially grouped by using a SVM-based algorithm; then the group with highest relevance is determined and the miRNAs in that group are finally ranked for selection according to their redundancy.

Rating: 
5
Average: 4.5 (2 votes)

miRNAfe

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

miRNAfe is a comprehensive tool to extract features from RNA sequences. It is freely available as a web service, allowing a single access point to almost all state-of-the-art feature extraction methods used today in a variety of works from different authors. It has a very simple user interface, where the user only needs to load a file containing the input sequences and select the features to extract. As a result, the user obtains a text file with the features extracted, which can be used to analyze the sequences or as input to a miRNA prediction software.

Rating: 
Average: 5 (1 vote)

iBFE

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-throughput biotechnologies have been widely used to characterize clinical samples from various perspectives e.g., epigenomics, genomics and transcriptomics. However, because of the heterogeneity of these technologies and their outputs, individual analysis of the various types of data is hard to create a comprehensive view of disease subtypes. Integrative methods are of pressing need.

Rating: 
5
Average: 5 (1 vote)

miMsg

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Algorithms predicting microRNA (miR)-mRNA interactions generate high numbers of possible interactions, many of which might be non-existent or irrelevant in a certain biological context. It is desirable to develop a transparent, user-friendly, unbiased tool to enrich miR-mRNA predictions.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to MATLAB