You are here

MATLAB

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. [Source: Wikipedia ]

Cupid

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

We introduce a method for simultaneous prediction of microRNA-target interactions and their mediated competitive endogenous RNA (ceRNA) interactions. Using high-throughput validation assays in breast cancer cell lines, we show that our integrative approach significantly improves on microRNA-target prediction accuracy as assessed by both mRNA and protein level measurements. Our biochemical assays support nearly 500 microRNA-target interactions with evidence for regulation in breast cancer tumors.

Rating: 
Average: 5 (1 vote)

MiRduplexSVM

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

We address the problem of predicting the position of a miRNA duplex on a microRNA hairpin via the development and application of a novel SVM-based methodology. Our method combines a unique problem representation and an unbiased optimization protocol to learn from mirBase19.0 an accurate predictive model, termed MiRduplexSVM. This is the first model that provides precise information about all four ends of the miRNA duplex.

Rating: 
Average: 5 (1 vote)

miRCluster

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Since the initial annotation of microRNAs (miRNAs) in 2001, many studies have sought to identify additional miRNAs experimentally or computationally in various species. MiRNAs act with the Argonaut family of proteins to regulate target messenger RNAs (mRNAs) post-transcriptionally. Currently, researches mainly focus on single miRNA function study.

Rating: 
Average: 5 (1 vote)

SePIA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Large-scale sequencing experiments are complex and require a wide spectrum of computational tools to extract and interpret relevant biological information. This is especially true in projects where individual processing and integrated analysis of both small RNA and complementary RNA data is needed. Such studies would benefit from a computational workflow that is easy to implement and standardizes the processing and analysis of both sequenced data types.

Rating: 
Average: 5 (1 vote)

LMMEL-miR-miner

Submitted by ChenLiang on Mon, 01/09/2017 - 10:31

BACKGROUND: In many cancers, microRNAs (miRs) contribute to metastatic progression by modulating phenotypic reprogramming processes such as epithelial-mesenchymal plasticity. This can be driven by miRs targeting multiple mRNA transcripts, inducing regulated changes across large sets of genes. The miR-target databases TargetScan and DIANA-microT predict putative relationships by examining sequence complementarity between miRs and mRNAs.

Rating: 
Average: 5 (1 vote)

miRNALasso

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) play important roles in general biological processes and diseases pathogenesis. Identifying miRNA target genes is an essential step to fully understand the regulatory effects of miRNAs. Many computational methods based on the sequence complementary rules and the miRNA and mRNA expression profiles have been developed for this purpose. It is noted that there have been many sequence features of miRNA targets available, including the context features of the target sites, the thermodynamic stability and the accessibility energy for miRNA-mRNA interaction.

Rating: 
Average: 5 (1 vote)

iSubgraph

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The high tumor heterogeneity makes it very challenging to identify key tumorigenic pathways as therapeutic targets. The integration of multiple omics data is a promising approach to identify driving regulatory networks in patient subgroups. Here, we propose a novel conceptual framework to discover patterns of miRNA-gene networks, observed frequently up- or down-regulated in a group of patients and to use such networks for patient stratification in hepatocellular carcinoma (HCC).

Rating: 
Average: 5 (1 vote)

YamiPred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small non-coding RNAs, which play a significant role in gene regulation. Predicting miRNA genes is a challenging bioinformatics problem and existing experimental and computational methods fail to deal with it effectively. We developed YamiPred, an embedded classification method that combines the efficiency and robustness of support vector machines (SVM) with genetic algorithms (GA) for feature selection and parameters optimization.

Rating: 
Average: 5 (1 vote)

FMIMS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) act as a major biomarker of cancer. All miRNAs in human body are not equally important for cancer identification. We propose a methodology, called FMIMS, which automatically selects the most relevant miRNAs for a particular type of cancer. In FMIMS, miRNAs are initially grouped by using a SVM-based algorithm; then the group with highest relevance is determined and the miRNAs in that group are finally ranked for selection according to their redundancy.

Rating: 
5
Average: 4.5 (2 votes)

miRNAfe

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

miRNAfe is a comprehensive tool to extract features from RNA sequences. It is freely available as a web service, allowing a single access point to almost all state-of-the-art feature extraction methods used today in a variety of works from different authors. It has a very simple user interface, where the user only needs to load a file containing the input sequences and select the features to extract. As a result, the user obtains a text file with the features extracted, which can be used to analyze the sequences or as input to a miRNA prediction software.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to MATLAB