You are here

MATLAB

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. [Source: Wikipedia ]

Cupid

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

We introduce a method for simultaneous prediction of microRNA-target interactions and their mediated competitive endogenous RNA (ceRNA) interactions. Using high-throughput validation assays in breast cancer cell lines, we show that our integrative approach significantly improves on microRNA-target prediction accuracy as assessed by both mRNA and protein level measurements. Our biochemical assays support nearly 500 microRNA-target interactions with evidence for regulation in breast cancer tumors.

Rating: 
Average: 5 (1 vote)

MiRduplexSVM

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

We address the problem of predicting the position of a miRNA duplex on a microRNA hairpin via the development and application of a novel SVM-based methodology. Our method combines a unique problem representation and an unbiased optimization protocol to learn from mirBase19.0 an accurate predictive model, termed MiRduplexSVM. This is the first model that provides precise information about all four ends of the miRNA duplex.

Rating: 
Average: 5 (1 vote)

LMMEL-miR-miner

Submitted by ChenLiang on Mon, 01/09/2017 - 10:31

BACKGROUND: In many cancers, microRNAs (miRs) contribute to metastatic progression by modulating phenotypic reprogramming processes such as epithelial-mesenchymal plasticity. This can be driven by miRs targeting multiple mRNA transcripts, inducing regulated changes across large sets of genes. The miR-target databases TargetScan and DIANA-microT predict putative relationships by examining sequence complementarity between miRs and mRNAs.

Rating: 
Average: 5 (1 vote)

miRNALasso

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) play important roles in general biological processes and diseases pathogenesis. Identifying miRNA target genes is an essential step to fully understand the regulatory effects of miRNAs. Many computational methods based on the sequence complementary rules and the miRNA and mRNA expression profiles have been developed for this purpose. It is noted that there have been many sequence features of miRNA targets available, including the context features of the target sites, the thermodynamic stability and the accessibility energy for miRNA-mRNA interaction.

Rating: 
Average: 5 (1 vote)

iSubgraph

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The high tumor heterogeneity makes it very challenging to identify key tumorigenic pathways as therapeutic targets. The integration of multiple omics data is a promising approach to identify driving regulatory networks in patient subgroups. Here, we propose a novel conceptual framework to discover patterns of miRNA-gene networks, observed frequently up- or down-regulated in a group of patients and to use such networks for patient stratification in hepatocellular carcinoma (HCC).

Rating: 
Average: 5 (1 vote)

miRCluster

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Since the initial annotation of microRNAs (miRNAs) in 2001, many studies have sought to identify additional miRNAs experimentally or computationally in various species. MiRNAs act with the Argonaut family of proteins to regulate target messenger RNAs (mRNAs) post-transcriptionally. Currently, researches mainly focus on single miRNA function study.

Rating: 
Average: 5 (1 vote)

SePIA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Large-scale sequencing experiments are complex and require a wide spectrum of computational tools to extract and interpret relevant biological information. This is especially true in projects where individual processing and integrated analysis of both small RNA and complementary RNA data is needed. Such studies would benefit from a computational workflow that is easy to implement and standardizes the processing and analysis of both sequenced data types.

Rating: 
Average: 5 (1 vote)

FREM

Submitted by ChenLiang on Mon, 01/09/2017 - 10:25

MicroRNAs (miRNAs) are known as an important indicator of cancers. Presence of cancer can be detected by identifying the responsible miRNAs. A fuzzy-rough entropy measure (FREM) is developed which can rank the miRNAs and thereby identifying the relevant ones. FREM is used to determine the relevance of a miRNA in terms of separability between normal and cancer classes. While computing the FREM for a miRNA, fuzziness takes care of the overlapping between normal and cancer expressions, whereas rough lower approximation determines their class sizes.

Rating: 
Average: 5 (1 vote)

ed_scan

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Growing evidence demonstrates that local well-ordered structures are closely correlated with cis-acting elements in the post-transcriptional regulation of gene expression. The prediction of a well-ordered folding sequence (WFS) in genomic sequences is very helpful in the determination of local RNA elements with structure-dependent functions in mRNAs.

Rating: 
Average: 5 (1 vote)

FMIGS

Submitted by ChenLiang on Sun, 09/10/2017 - 17:05

MicroRNAs (miRNA) are one of the important regulators of cell division and also responsible for cancer development. Among the discovered miRNAs, not all are important for cancer detection. In this regard a fuzzy mutual information (FMI) based grouping and miRNA selection method (FMIGS) is developed to identify the miRNAs responsible for a particular cancer. First, the miRNAs are ranked and divided into several groups. Then the most important group is selected among the generated groups.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to MATLAB