You are here

MAC OS

MicroRazerS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Deep sequencing has become the method of choice for determining the small RNA content of a cell. Mapping the sequenced reads onto their reference genome serves as the basis for all further analyses, namely for identification and quantification. A method frequently used is Mega BLAST followed by several filtering steps, even though it is slow and inefficient for this task. Also, none of the currently available short read aligners has established itself for the particular task of small RNA mapping.

Rating: 
Average: 5 (1 vote)

TmiRUSite and TmiROSite scripts

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

microRNAs are small RNA molecules that inhibit the translation of target genes. microRNA binding sites are located in the untranslated regions as well as in the coding domains. We describe TmiRUSite and TmiROSite scripts developed using python as tools for the extraction of nucleotide sequences for miRNA binding sites with their encoded amino acid residue sequences. The scripts allow for retrieving a set of additional sequences at left and at right from the binding site. The scripts presents all received data in table formats that are easy to analyse further.

Rating: 
Average: 5 (1 vote)

miRNAmeConverter

Submitted by ChenLiang on Mon, 01/09/2017 - 10:23

The miRBase database is the central and official repository for miRNAs and the current release is miRBase version 21.0. Name changes in different miRBase releases cause inconsistencies in miRNA names from version to version. When working with only a small number of miRNAs the translation can be done manually. However, with large sets of miRNAs, the necessary correction of such inconsistencies becomes burdensome and error-prone.

Rating: 
Average: 5 (1 vote)

FMIGS

Submitted by ChenLiang on Sun, 09/10/2017 - 17:05

MicroRNAs (miRNA) are one of the important regulators of cell division and also responsible for cancer development. Among the discovered miRNAs, not all are important for cancer detection. In this regard a fuzzy mutual information (FMI) based grouping and miRNA selection method (FMIGS) is developed to identify the miRNAs responsible for a particular cancer. First, the miRNAs are ranked and divided into several groups. Then the most important group is selected among the generated groups.

Rating: 
Average: 5 (1 vote)

birta

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

There have been many successful experimental and bioinformatics efforts to elucidate transcription factor (TF)-target networks in several organisms. For many organisms, these annotations are complemented by miRNA-target networks of good quality. Attempts that use these networks in combination with gene expression data to draw conclusions on TF or miRNA activity are, however, still relatively sparse.

Rating: 
Average: 5 (1 vote)

sRNATarget

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Accurate prediction of sRNA targets plays a key role in determining sRNA functions. Here we introduced two mathematical models, sRNATargetNB and sRNATargetSVM, for prediction of sRNA targets using Nai ve Bayes method and support vector machines (SVM), respectively. The training dataset was composed of 46 positive samples (real sRNA-targets interaction) and 86 negative samples (no interaction between sRNA and targets). The leave-one-out cross-validation (LOOCV) classification accuracy was 91.67% for sRNATargetNB, and 100.00% for sRNATargetSVM.

Rating: 
Average: 5 (1 vote)

CHRONOS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In the era of network medicine and the rapid growth of paired time series mRNA/microRNA expression experiments, there is an urgent need for pathway enrichment analysis methods able to capture the time- and condition-specific 'active parts' of the biological circuitry as well as the microRNA impact. Current methods ignore the multiple dynamical 'themes'-in the form of enriched biologically relevant microRNA-mediated subpathways-that determine the functionality of signaling networks across time.

Rating: 
5
Average: 4.5 (2 votes)

ORCA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Often during the analysis of biological data, it is of importance to interpret the correlation structure that exists between variables. Such correlations may reveal patterns of co-regulation that are indicative of biochemical pathways or common mechanisms of response to a related set of treatments. However, analyses of correlations are usually conducted by either subjective interpretation of the univariate covariance matrix or by applying multivariate modeling techniques, which do not take prior biological knowledge into account.

Rating: 
Average: 5 (1 vote)

FREM

Submitted by ChenLiang on Mon, 01/09/2017 - 10:25

MicroRNAs (miRNAs) are known as an important indicator of cancers. Presence of cancer can be detected by identifying the responsible miRNAs. A fuzzy-rough entropy measure (FREM) is developed which can rank the miRNAs and thereby identifying the relevant ones. FREM is used to determine the relevance of a miRNA in terms of separability between normal and cancer classes. While computing the FREM for a miRNA, fuzziness takes care of the overlapping between normal and cancer expressions, whereas rough lower approximation determines their class sizes.

Rating: 
Average: 5 (1 vote)

MicroTarget

Submitted by ChenLiang on Sun, 09/10/2017 - 20:23

MicroRNAs are known to play an essential role in gene regulation in plants and animals. The standard method for understanding microRNA-gene interactions is randomized controlled perturbation experiments. These experiments are costly and time consuming. Therefore, use of computational methods is essential. Currently, several computational methods have been developed to discover microRNA target genes. However, these methods have limitations based on the features that are used for prediction.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to MAC OS