You are here

Active

mirdba

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In silico generated search for microRNAs (miRNAs) has been driven by methods compiling structural features of the miRNA precursor hairpin, as well as to some degree combining this with the analysis of RNA-seq profiles for which the miRNA typically leave the drosha/dicer fingerprint of 1-2 ~22 nt blocks of reads corresponding to the mature and star miRNA. In complement to the previous methods, we present a study where we systematically exploit these patterns of read profiles.

Rating: 
Average: 5 (1 vote)

miRCluster

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Since the initial annotation of microRNAs (miRNAs) in 2001, many studies have sought to identify additional miRNAs experimentally or computationally in various species. MiRNAs act with the Argonaut family of proteins to regulate target messenger RNAs (mRNAs) post-transcriptionally. Currently, researches mainly focus on single miRNA function study.

Rating: 
Average: 5 (1 vote)

CircInteractome

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Circular RNAs (circRNAs) are widely expressed in animal cells, but their biogenesis and functions are poorly understood. CircRNAs have been shown to act as sponges for miRNAs and may also potentially sponge RNA-binding proteins (RBPs) and are thus predicted to function as robust posttranscriptional regulators of gene expression. The joint analysis of large-scale transcriptome data coupled with computational analyses represents a powerful approach to elucidate possible biological roles of ribonucleoprotein (RNP) complexes.

Rating: 
5
Average: 4.5 (2 votes)

miRNA Digger

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are important regulators of gene expression. The recent advances in high-throughput sequencing (HTS) technique have greatly facilitated large-scale detection of the miRNAs. However, thoroughly discovery of novel miRNAs from the available HTS data sets remains a major challenge. In this study, we observed that Dicer-mediated cleavage sites for the processing of the miRNA precursors could be mapped by using degradome sequencing data in both animals and plants.

Rating: 
Average: 5 (1 vote)

TargetExpress

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Mammalian genomes encode for thousands of microRNAs, which can potentially regulate the majority of protein-coding genes. They have been implicated in development and disease, leading to great interest in understanding their function, with computational methods being widely used to predict their targets. Most computational methods rely on sequence features, thermodynamics, and conservation filters; essentially scanning the whole transcriptome to predict one set of targets for each microRNA.

Rating: 
Average: 5 (1 vote)

ReNE

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

One of the biggest challenges in the study of biological regulatory mechanisms is the integration, americanmodeling, and analysis of the complex interactions which take place in biological networks. Despite post transcriptional regulatory elements (i.e., miRNAs) are widely investigated in current research, their usage and visualization in biological networks is very limited. Regulatory networks are commonly limited to gene entities.

Rating: 
Average: 5 (1 vote)

ExiMiR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-quality expression data are required to investigate the biological effects of microRNAs (miRNAs). The goal of this study was, first, to assess the quality of miRNA expression data based on microarray technologies and, second, to consolidate it by applying a novel normalization method. Indeed, because of significant differences in platform designs, miRNA raw data cannot be normalized blindly with standard methods developed for gene expression.

Rating: 
Average: 5 (1 vote)

miRVaS

Submitted by ChenLiang on Mon, 10/24/2016 - 23:12

Genetic variants in or near miRNA genes can have profound effects on miRNA expression and targeting. As user-friendly software for the impact prediction of miRNA variants on a large scale is still lacking, we created a tool called miRVaS. miRVaS automates this prediction by annotating the location of the variant relative to functional regions within the miRNA hairpin (seed, mature, loop, hairpin arm, flanks) and by annotating all predicted structural changes within the miRNA due to the variant.

Rating: 
5
Average: 5 (2 votes)

ccNET

Submitted by ChenLiang on Mon, 01/09/2017 - 11:39

Plant genera with both diploid and polyploid species are a common evolutionary occurrence. Polyploids, especially allopolyploids such as cotton and wheat, are a great model system for heterosis research. Here, we have integrated genome sequences and transcriptome data of Gossypium species to construct co-expression networks and identified functional modules from different cotton species, including 1155 and 1884 modules in G. arboreum and G. hirsutum, respectively. We overlayed the gene expression results onto the co-expression network.

Rating: 
4
Average: 3.5 (2 votes)

plantDARIO

Submitted by ChenLiang on Thu, 04/06/2017 - 18:49

High-throughput sequencing techniques have made it possible to assay an organism's entire repertoire of small non-coding RNAs (ncRNAs) in an efficient and cost-effective manner. The moderate size of small RNA-seq datasets makes it feasible to provide free web services to the research community that provide many basic features of a small RNA-seq analysis, including quality control, read normalization, ncRNA quantification, and the prediction of putative novel ncRNAs. DARIO is one such system that so far has been focussed on animals.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Active