You are here

Active

sRNAnalyzer

Submitted by ChenLiang on Tue, 01/09/2018 - 19:05

Although many tools have been developed to analyze small RNA sequencing (sRNA-Seq) data, it remains challenging to accurately analyze the small RNA population, mainly due to multiple sequence ID assignment caused by short read length. Additional issues in small RNA analysis include low consistency of microRNA (miRNA) measurement results across different platforms, miRNA mapping associated with miRNA sequence variation (isomiR) and RNA editing, and the origin of those unmapped reads after screening against all endogenous reference sequence databases.

Rating: 
Average: 5 (1 vote)

USAGP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Cis-antisense gene pairs (CASGPs) can transcribe mRNAs from an opposite strand of a given locus. To classify and understand diverse CASGP phenomena in the human we compiled a genome-wide catalog of CASGPs and integrated these sequences with microarray, SAGE and miRNA data. Using the concept of overlapping regions and clustering of SA transcripts by chromosome coordinates, we identified up to 9000 overlapping antisense loci. Four thousand three hundred and seventy-four of these CASGPs form 1759 complex gene architectures.

Rating: 
Average: 5 (1 vote)

siSPOTR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

RNA interference (RNAi) serves as a powerful and widely used gene silencing tool for basic biological research and is being developed as a therapeutic avenue to suppress disease-causing genes. However, the specificity and safety of RNAi strategies remains under scrutiny because small inhibitory RNAs (siRNAs) induce off-target silencing. Currently, the tools available for designing siRNAs are biased toward efficacy as opposed to specificity.

Rating: 
Average: 5 (1 vote)

LeARN

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In the last decade, sequencing projects have led to the development of a number of annotation systems dedicated to the structural and functional annotation of protein-coding genes. These annotation systems manage the annotation of the non-protein coding genes (ncRNAs) in a very crude way, allowing neither the edition of the secondary structures nor the clustering of ncRNA genes into families which are crucial for appropriate annotation of these molecules.

Rating: 
Average: 5 (1 vote)

TGRD

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Tomato Genomic Resources Database (TGRD) allows interactive browsing of tomato genes, micro RNAs, simple sequence repeats (SSRs), important quantitative trait loci and Tomato-EXPEN 2000 genetic map altogether or separately along twelve chromosomes of tomato in a single window. The database is created using sequence of the cultivar Heinz 1706. High quality single nucleotide polymorphic (SNP) sites between the genes of Heinz 1706 and the wild tomato S. pimpinellifolium LA1589 are also included. Genes are classified into different families.

Rating: 
Average: 5 (1 vote)

pssRNAMiner

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In plants, short RNAs including approximately 21-nt microRNA (miRNA) and 21-nt trans-acting siRNA (ta-siRNA) compose a 'miRNA --> ta-siRNA --> target gene' cascade pathway that regulates gene expression at the posttranscriptional level. In this cascade, biogenesis of ta-siRNA clusters requires 21-nt intervals (i.e. phasing) and miRNA (phase-initiator) cleavage sites on its TAS transcript. Here, we report a novel web server, pssRNAMiner, which is developed to identify both the clusters of phased small RNAs as well as the potential phase-initiator.

Rating: 
Average: 5 (1 vote)

RENATO

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Transcription factors (TFs) and miRNAs are the most important dynamic regulators in the control of gene expression in multicellular organisms. These regulatory elements play crucial roles in development, cell cycling and cell signaling, and they have also been associated with many diseases. The Regulatory Network Analysis Tool (RENATO) web server makes the exploration of regulatory networks easy, enabling a better understanding of functional modularity and network integrity under specific perturbations.

Rating: 
Average: 5 (1 vote)

TMMN

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Molecular networks are the basis of biological processes. Such networks can be decomposed into smaller modules, also known as network motifs. These motifs show interesting dynamical behaviors, in which co-operativity effects between the motif components play a critical role in human diseases. We have developed a motif-searching algorithm, which is able to identify common motif types from the cancer networks and signal transduction networks (STNs).

Rating: 
Average: 5 (1 vote)

miREE

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Computational methods for microRNA target prediction are a fundamental step to understand the miRNA role in gene regulation, a key process in molecular biology. In this paper we present miREE, a novel microRNA target prediction tool. miREE is an ensemble of two parts entailing complementary but integrated roles in the prediction. The Ab-Initio module leverages upon a genetic algorithmic approach to generate a set of candidate sites on the basis of their microRNA-mRNA duplex stability properties.

Rating: 
Average: 5 (1 vote)

miRcomp

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Several techniques have been tailored to the quantification of microRNA expression, including hybridization arrays, quantitative PCR (qPCR), and high-throughput sequencing. Each of these has certain strengths and limitations depending both on the technology itself and the algorithm used to convert raw data into expression estimates. Reliable quantification of microRNA expression is challenging in part due to the relatively low abundance and short length of the miRNAs.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Active