mircisreg
MicroRNAs are a class of endogenous small RNAs that play regulatory roles. Intergenic miRNAs are believed to be transcribed independently, but the transcriptional control of these crucial regulators is still poorly understood.
MicroRNAs are a class of endogenous small RNAs that play regulatory roles. Intergenic miRNAs are believed to be transcribed independently, but the transcriptional control of these crucial regulators is still poorly understood.
Aberrant microRNA (miRNA) expression is implicated in tumorigenesis. The underlying mechanisms are unclear because the regulations of each miRNA on potentially hundreds of mRNAs are sample specific. We describe a novel approach to inferProbabilisticMiRNA-mRNA Interaction Signature ('ProMISe') from a single pair of miRNA-mRNA expression profile. Our model considers mRNA and miRNA competition as a probabilistic function of the expressed seeds (matches). To demonstrate ProMISe, we extensively exploited The Cancer Genome Atlasdata.
Two complete genome sequences are available for Vitis vinifera Pinot noir. Based on the sequence and gene predictions produced by the IASMA, we performed an in silico detection of putative microRNA genes and of their targets, and collected the most reliable microRNA predictions in a web database. The application is available at http://www.itb.cnr.it/ptp/grapemirna/.
Although more than 100 different types of RNA modifications have been characterized across all living organisms, surprisingly little is known about the modified positions and their functions. Recently, various high-throughput modification sequencing methods have been developed to identify diverse post-transcriptional modifications of RNA molecules.
We address the problem of predicting the position of a miRNA duplex on a microRNA hairpin via the development and application of a novel SVM-based methodology. Our method combines a unique problem representation and an unbiased optimization protocol to learn from mirBase19.0 an accurate predictive model, termed MiRduplexSVM. This is the first model that provides precise information about all four ends of the miRNA duplex.
Transcription factors bind to the genome by forming specific contacts with the primary DNA sequence; however, RNA-binding proteins (RBPs) have greater scope to achieve binding specificity through the RNA secondary structure.
MicroRNAs (miRNAs) are nonprotein coding RNAs between 20 and 22 nucleotides long that attenuate protein production. Different types of sequence data are being investigated for novel miRNAs, including genomic and transcriptomic sequences. A variety of machine learning methods have successfully predicted miRNA precursors, mature miRNAs, and other nonprotein coding sequences. MirTools, mirDeep2, and miRanalyzer require "read count" to be included with the input sequences, which restricts their use to deep-sequencing data.
Identifying functionally significant microRNAs (miRs) and their correspondingly most important messenger RNA targets (mRNAs) in specific biological contexts is a critical task to improve our understanding of molecular mechanisms underlying organismal development, physiology and disease. However, current miR-mRNA target prediction platforms rank miR targets based on estimated strength of physical interactions and lack the ability to rank interactants as a function of their potential to impact a given biological system.
Massive parallel sequencing of transcriptomes, revealed the presence of many miRNAs and miRNAs variants named isomiRs with a potential role in several cellular processes through their interaction with a target mRNA. Many methods and tools have been recently devised to detect and quantify miRNAs from sequencing data. However, all of them are implemented on top of general purpose alignment methods, thus providing poorly accurate results and no information concerning isomiRs and conserved miRNA-mRNA interaction sites.
Non-coding RNA (ncRNA) genes play a major role in control of heterogeneous cellular behavior. Yet, their functions are largely uncharacterized. Current available databases lack in-depth information of ncRNA functions across spectrum of various cells/tissues. Here, we present FARNA, a knowledgebase of inferred functions of 10,289 human ncRNA transcripts (2,734 microRNA and 7,555 long ncRNA) in 119 tissues and 177 primary cells of human.