You are here

Windows

H-RVM

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recent advances in genome technologies and the subsequent collection of genomic information at various molecular resolutions hold promise to accelerate the discovery of new therapeutic targets. A critical step in achieving these goals is to develop efficient clinical prediction models that integrate these diverse sources of high-throughput data. This step is challenging due to the presence of high-dimensionality and complex interactions in the data.

Rating: 
Average: 5 (1 vote)

MinDist

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The computational search for novel microRNA (miRNA) precursors often involves some sort of structural analysis with the aim of identifying which type of structures are prone to being recognized and processed by the cellular miRNA-maturation machinery. A natural way to tackle this problem is to perform clustering over the candidate structures along with known miRNA precursor structures. Mixed clusters allow then the identification of candidates that are similar to known precursors.

Rating: 
Average: 5 (1 vote)

ImiRP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small ~22 nucleotide non-coding RNAs that function as post-transcriptional regulators of messenger RNA (mRNA) through base-pairing to 6-8 nucleotide long target sites, usually located within the mRNA 3' untranslated region. A common approach to validate and probe microRNA-mRNA interactions is to mutate predicted target sites within the mRNA and determine whether it affects miRNA-mediated activity.

Rating: 
Average: 5 (1 vote)

TarPmiR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The identification of microRNA (miRNA) target sites is fundamentally important for studying gene regulation. There are dozens of computational methods available for miRNA target site prediction. Despite their existence, we still cannot reliably identify miRNA target sites, partially due to our limited understanding of the characteristics of miRNA target sites.

Rating: 
Average: 5 (1 vote)

Centratliy-based Pathway Enrichment

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Biological pathways are important for understanding biological mechanisms. Thus, finding important pathways that underlie biological problems helps researchers to focus on the most relevant sets of genes. Pathways resemble networks with complicated structures, but most of the existing pathway enrichment tools ignore topological information embedded within pathways, which limits their applicability.

Rating: 
Average: 5 (1 vote)

miRCluster

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Since the initial annotation of microRNAs (miRNAs) in 2001, many studies have sought to identify additional miRNAs experimentally or computationally in various species. MiRNAs act with the Argonaut family of proteins to regulate target messenger RNAs (mRNAs) post-transcriptionally. Currently, researches mainly focus on single miRNA function study.

Rating: 
Average: 5 (1 vote)

chimiRic

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recent technologies like AGO CLIP sequencing and CLASH enable direct transcriptome-wide identification of AGO binding and miRNA target sites, but the most widely used miRNA target prediction algorithms do not exploit these data. Here we use discriminative learning on AGO CLIP and CLASH interactions to train a novel miRNA target prediction model. Our method combines two SVM classifiers, one to predict miRNA-mRNA duplexes and a second to learn a binding model of AGO's local UTR sequence preferences and positional bias in 3'UTR isoforms.

Rating: 
5
Average: 4.5 (2 votes)

PPImiRFS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MiRNAs play a critical role in the response of plants to abiotic and biotic stress. However, the functions of most plant miRNAs remain unknown. Inferring these functions from miRNA functional similarity would thus be useful. This study proposes a new method, called PPImiRFS, for inferring miRNA functional similarity.

Rating: 
Average: 5 (1 vote)

PerM

Submitted by ChenLiang on Sun, 09/10/2017 - 20:07

The explosion of next-generation sequencing data has spawned the design of new algorithms and software tools to provide efficient mapping for different read lengths and sequencing technologies. In particular, ABI's sequencer (SOLiD system) poses a big computational challenge with its capacity to produce very large amounts of data, and its unique strategy of encoding sequence data into color signals.

Rating: 
Average: 5 (1 vote)

MKRMDA

Submitted by ChenLiang on Tue, 01/09/2018 - 18:50

Recently, as the research of microRNA (miRNA) continues, there are plenty of experimental evidences indicating that miRNA could be associated with various human complex diseases development and progression. Hence, it is necessary and urgent to pay more attentions to the relevant study of predicting diseases associated miRNAs, which may be helpful for effective prevention, diagnosis and treatment of human diseases.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Windows