You are here

The Cancer Genome Atlas (TCGA)

The Cancer Genome Atlas (TCGA) is a collaboration between the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI) that has generated comprehensive, multi-dimensional maps of the key genomic changes in 33 types of cancer. The TCGA dataset, comprising more than two petabytes of genomic data, has been made publically available, and this genomic information helps the cancer research community to improve the prevention, diagnosis, and treatment of cancer. [Source: TCGA]

SpidermiR

Submitted by ChenLiang on Sun, 09/10/2017 - 20:15

Gene Regulatory Networks (GRNs) control many biological systems, but how such network coordination is shaped is still unknown. GRNs can be subdivided into basic connections that describe how the network members interact e.g., co-expression, physical interaction, co-localization, genetic influence, pathways, and shared protein domains. The important regulatory mechanisms of these networks involve miRNAs.

Rating: 
Average: 5 (1 vote)

decodeRNA

Submitted by ChenLiang on Tue, 01/09/2018 - 17:45

Although the long non-coding RNA (lncRNA) landscape is expanding rapidly, only a small number of lncRNAs have been functionally annotated. Here, we present decodeRNA (http://www.decoderna.org), a database providing functional contexts for both human lncRNAs and microRNAs in 29 cancer and 12 normal tissue types.

Rating: 
Average: 5 (1 vote)

iNMF

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recent advances in high-throughput omics technologies have enabled biomedical researchers to collect large-scale genomic data. As a consequence, there has been growing interest in developing methods to integrate such data to obtain deeper insights regarding the underlying biological system. A key challenge for integrative studies is the heterogeneity present in the different omics data sources, which makes it difficult to discern the coordinated signal of interest from source-specific noise or extraneous effects.

Rating: 
Average: 4.5 (2 votes)

Tiresias

Submitted by ChenLiang on Tue, 01/09/2018 - 19:08

MicroRNAs (miRNAs) are short non-coding RNAs that regulate expression of target messenger RNAs (mRNAs) post-transcriptionally. Understanding the precise regulatory role of miRNAs is of great interest since miRNAs have been shown to play an important role in development, diseases, and other biological processes. Early work on miRNA target prediction has focused on static sequence-driven miRNA-mRNA complementarity. However, recent research also utilizes expression-level data to study context-dependent regulation effects in a more dynamic, physiologically-relevant setting.

Rating: 
Average: 5 (1 vote)

MiRComb

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small RNAs that regulate the expression of target mRNAs by specific binding on the mRNA 3'UTR and promoting mRNA degradation in the majority of cases. It is often of interest to know the specific targets of a miRNA in order to study them in a particular disease context. In that sense, some databases have been designed to predict potential miRNA-mRNA interactions based on hybridization sequences. However, one of the main limitations is that these databases have too many false positives and do not take into account disease-specific interactions.

Rating: 
5
Average: 4.5 (2 votes)

miRpower

Submitted by ChenLiang on Fri, 10/21/2016 - 16:39

PURPOSE: The proper validation of prognostic biomarkers is an important clinical issue in breast cancer research. MicroRNAs (miRNAs) have emerged as a new class of promising breast cancer biomarkers. In the present work, we developed an integrated online bioinformatic tool to validate the prognostic relevance of miRNAs in breast cancer. METHODS: A database was set up by searching the GEO, EGA, TCGA, and PubMed repositories to identify datasets with published miRNA expression and clinical data.

Rating: 
Average: 5 (1 vote)

TissGDB

Submitted by ChenLiang on Tue, 01/09/2018 - 19:09

Tissue-specific gene expression is critical in understanding biological processes, physiological conditions, and disease. The identification and appropriate use of tissue-specific genes (TissGenes) will provide important insights into disease mechanisms and organ-specific therapeutic targets.

Rating: 
Average: 5 (1 vote)

MULSEA

Submitted by ChenLiang on Mon, 01/09/2017 - 10:07

MOTIVATION: It is often the case in biological measurement data that results are given as a ranked list of quantities-for example, differential expression (DE) of genes as inferred from microarrays or RNA-seq. Recent years brought considerable progress in statistical tools for enrichment analysis in ranked lists. Several tools are now available that allow users to break the fixed set paradigm in assessing statistical enrichment of sets of genes. Continuing with the example, these tools identify factors that may be associated with measured differential expression.

Rating: 
Average: 5 (1 vote)

miRNA-ensemble

Submitted by ChenLiang on Mon, 01/09/2017 - 10:36

Cancer classification has been a crucial topic of research in cancer treatment. In the last decade, messenger RNA (mRNA) expression profiles have been widely used to classify different types of cancers. With the discovery of a new class of small non-coding RNAs; known as microRNAs (miRNAs), various studies have shown that the expression patterns of miRNA can also accurately classify human cancers. Therefore, there is a great demand for the development of machine learning approaches to accurately classify various types of cancers using miRNA expression data.

Rating: 
Average: 5 (1 vote)

mirnanalyze

Submitted by ChenLiang on Thu, 04/06/2017 - 19:32

The current state-of-the-art in cancer diagnosis and treatment is not ideal; diagnostic tests are accurate but invasive, and treatments are "one-size fits-all" instead of being personalized. Recently, miRNA's have garnered significant attention as cancer biomarkers, owing to their ease of access (circulating miRNA in the blood) and stability. There have been many studies showing the effectiveness of miRNA data in diagnosing specific cancer types, but few studies explore the role of miRNA in predicting treatment outcome.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to The Cancer Genome Atlas (TCGA)