You are here

The Cancer Genome Atlas (TCGA)

The Cancer Genome Atlas (TCGA) is a collaboration between the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI) that has generated comprehensive, multi-dimensional maps of the key genomic changes in 33 types of cancer. The TCGA dataset, comprising more than two petabytes of genomic data, has been made publically available, and this genomic information helps the cancer research community to improve the prevention, diagnosis, and treatment of cancer. [Source: TCGA]

mythology

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Post ENCODE, regulatory sRNAs (rsRNAs) like miRNAs have established their status as one of the core regulatory elements of cell systems. However, large number of rsRNAs are compromised due to traditional approaches to identify miRNAs, limiting the otherwise vast world of rsRNAs mainly to hair-pin loop bred typical miRNAs. The present study has analyzed for the first time a huge volume of sequencing data from 4997 individuals and 25 cancer types to report 11 234 potentially regulatory small RNAs which appear to have deep reaching impact.

Rating: 
Average: 5 (1 vote)

SpidermiR

Submitted by ChenLiang on Sun, 09/10/2017 - 20:15

Gene Regulatory Networks (GRNs) control many biological systems, but how such network coordination is shaped is still unknown. GRNs can be subdivided into basic connections that describe how the network members interact e.g., co-expression, physical interaction, co-localization, genetic influence, pathways, and shared protein domains. The important regulatory mechanisms of these networks involve miRNAs.

Rating: 
Average: 5 (1 vote)

decodeRNA

Submitted by ChenLiang on Tue, 01/09/2018 - 17:45

Although the long non-coding RNA (lncRNA) landscape is expanding rapidly, only a small number of lncRNAs have been functionally annotated. Here, we present decodeRNA (http://www.decoderna.org), a database providing functional contexts for both human lncRNAs and microRNAs in 29 cancer and 12 normal tissue types.

Rating: 
Average: 5 (1 vote)

iNMF

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recent advances in high-throughput omics technologies have enabled biomedical researchers to collect large-scale genomic data. As a consequence, there has been growing interest in developing methods to integrate such data to obtain deeper insights regarding the underlying biological system. A key challenge for integrative studies is the heterogeneity present in the different omics data sources, which makes it difficult to discern the coordinated signal of interest from source-specific noise or extraneous effects.

Rating: 
Average: 4.5 (2 votes)

Tiresias

Submitted by ChenLiang on Tue, 01/09/2018 - 19:08

MicroRNAs (miRNAs) are short non-coding RNAs that regulate expression of target messenger RNAs (mRNAs) post-transcriptionally. Understanding the precise regulatory role of miRNAs is of great interest since miRNAs have been shown to play an important role in development, diseases, and other biological processes. Early work on miRNA target prediction has focused on static sequence-driven miRNA-mRNA complementarity. However, recent research also utilizes expression-level data to study context-dependent regulation effects in a more dynamic, physiologically-relevant setting.

Rating: 
Average: 5 (1 vote)

MCMG

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) play a crucial role in tumorigenesis and development through their effects on target genes. The characterization of miRNA-gene interactions will lead to a better understanding of cancer mechanisms. Many computational methods have been developed to infer miRNA targets with/without expression data. Because expression datasets are in general limited in size, most existing methods concatenate datasets from multiple studies to form one aggregated dataset to increase sample size and power.

Rating: 
Average: 5 (1 vote)

miRSM

Submitted by ChenLiang on Tue, 01/09/2018 - 19:22

MicroRNA (miRNA) sponges with multiple tandem miRNA binding sequences can sequester miRNAs from their endogenous target mRNAs. Therefore, miRNA sponge acting as a decoy is extremely important for long-term loss-of-function studies both in vivo and in silico. Recently, a growing number of in silico methods have been used as an effective technique to generate hypotheses for in vivo methods for studying the biological functions and regulatory mechanisms of miRNA sponges.

Rating: 
3
Average: 3 (2 votes)

MMiRNA-Viewer

Submitted by ChenLiang on Mon, 01/09/2017 - 10:15

BACKGROUND: MicroRNAs (miRNA) are short nucleotides that interact with their target genes through 3' untranslated regions (UTRs). The Cancer Genome Atlas (TCGA) harbors an increasing amount of cancer genome data for both tumor and normal samples. However, there are few visualization tools focusing on concurrently displaying important relationships and attributes between miRNAs and mRNAs of both cancer tumor and normal samples.

Rating: 
Average: 5 (1 vote)

LMMEL-miR-miner

Submitted by ChenLiang on Mon, 01/09/2017 - 10:31

BACKGROUND: In many cancers, microRNAs (miRs) contribute to metastatic progression by modulating phenotypic reprogramming processes such as epithelial-mesenchymal plasticity. This can be driven by miRs targeting multiple mRNA transcripts, inducing regulated changes across large sets of genes. The miR-target databases TargetScan and DIANA-microT predict putative relationships by examining sequence complementarity between miRs and mRNAs.

Rating: 
Average: 5 (1 vote)

H-RVM

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recent advances in genome technologies and the subsequent collection of genomic information at various molecular resolutions hold promise to accelerate the discovery of new therapeutic targets. A critical step in achieving these goals is to develop efficient clinical prediction models that integrate these diverse sources of high-throughput data. This step is challenging due to the presence of high-dimensionality and complex interactions in the data.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to The Cancer Genome Atlas (TCGA)