You are here

Single Nucleotide Polymorphism (SNP)

A single-nucleotide polymorphism, often abbreviated to SNP (pronounced snip; plural snips), is a variation in a single nucleotide that occurs at a specific position in the genome, where each variation is present to some appreciable degree within a population (e.g. > 1%). [Source: Wikipedia]

DIANA-miRPath

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

DIANA-mirPath is a web-based computational tool developed to identify molecular pathways potentially altered by the expression of single or multiple microRNAs. The software performs an enrichment analysis of multiple microRNA target genes comparing each set of microRNA targets to all known KEGG pathways. The combinatorial effect of co-expressed microRNAs in the modulation of a given pathway is taken into account by the simultaneous analysis of multiple microRNAs.

Rating: 
4
Average: 4 (1 vote)

PolymiRTS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Polymorphism in microRNA Target Site (PolymiRTS) database is a collection of naturally occurring DNA variations in putative microRNA target sites. PolymiRTSs may affect gene expression and cause variations in complex phenotypes. The database integrates sequence polymorphism, phenotype and expression microarray data, and characterizes PolymiRTSs as potential candidates responsible for the quantitative trait locus (QTL) effects. It is a resource for studying PolymiRTSs and their implications in phenotypic variations.

Rating: 
Average: 5 (1 vote)

miRNASNP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are studied as key regulators of gene expression involved in different diseases. Several single nucleotide polymorphisms (SNPs) in miRNA genes or target sites (miRNA-related SNPs) have been proved to be associated with human diseases by affecting the miRNA-mediated regulatory function. To systematically analyze miRNA-related SNPs and their effects, we performed a genome-wide scan for SNPs in human pre-miRNAs, miRNA flanking regions, target sites, and designed a pipeline to predict the effects of them on miRNA-target interaction.

Rating: 
Average: 5 (1 vote)

MicroSNiPer

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs are short, approximately 22 nucleotide noncoding RNAs binding to partially complementary sites in the 3'UTR of target mRNAs. This process generally results in repression of multiple targets by a particular microRNA. There is substantial interest in methods designed to predict the microRNA targets and effect of single nucleotide polymorphisms (SNPs) on microRNA binding, given the impact of microRNA on posttranscriptional regulation and its potential relation to complex diseases.

Rating: 
Average: 5 (1 vote)

Patrocles

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Studying the muscular hypertrophy of Texel sheep by forward genetics, we have identified an A-to-G transition in the 3'UTR of the GDF8 gene that reveals an illegitimate target site for microRNAs miR-1 and miR-206 that are highly expressed in skeletal muscle. This causes the down-regulation of this muscle-specific chalone and hence contributes to the muscular hypertrophy of Texel sheep.

Rating: 
Average: 5 (1 vote)

miRNA SNiPer

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are a class of non-coding RNA that plays an important role in posttranscriptional regulation of mRNA. Evidence has shown that miRNA gene variability might interfere with its function resulting in phenotypic variation and disease susceptibility. A major role in miRNA target recognition is ascribed to complementarity with the miRNA seed region that can be affected by polymorphisms.

Rating: 
Average: 5 (1 vote)

lncRNASNP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Long non-coding RNAs (lncRNAs) play key roles in various cellular contexts and diseases by diverse mechanisms. With the rapid growth of identified lncRNAs and disease-associated single nucleotide polymorphisms (SNPs), there is a great demand to study SNPs in lncRNAs. Aiming to provide a useful resource about lncRNA SNPs, we systematically identified SNPs in lncRNAs and analyzed their potential impacts on lncRNA structure and function.

Rating: 
Average: 5 (1 vote)

miRdSNP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Single nucleotide polymorphisms (SNPs) can lead to the susceptibility and onset of diseases through their effects on gene expression at the posttranscriptional level. Recent findings indicate that SNPs could create, destroy, or modify the efficiency of miRNA binding to the 3'UTR of a gene, resulting in gene dysregulation. With the rapidly growing number of published disease-associated SNPs (dSNPs), there is a strong need for resources specifically recording dSNPs on the 3'UTRs and their nucleotide distance from miRNA target sites.

Rating: 
Average: 5 (1 vote)

MirSNP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Numerous single nucleotide polymorphisms (SNPs) associated with complex diseases have been identified by genome-wide association studies (GWAS) and expression quantitative trait loci (eQTLs) studies. However, few of these SNPs have explicit biological functions. Recent studies indicated that the SNPs within the 3'UTR regions of susceptibility genes could affect complex traits/diseases by affecting the function of miRNAs. These 3'UTR SNPs are functional candidates and therefore of interest to GWAS and eQTL researchers.

Rating: 
Average: 5 (1 vote)

mrSNP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are short (19-23 nucleotides) non-coding RNAs that bind to sites in the 3'untranslated regions (3'UTR) of a targeted messenger RNA (mRNA). Binding leads to degradation of the transcript or blocked translation resulting in decreased expression of the targeted gene. Single nucleotide polymorphisms (SNPs) have been found in 3'UTRs that disrupt normal miRNA binding or introduce new binding sites and some of these have been associated with disease pathogenesis.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Single Nucleotide Polymorphism (SNP)