You are here

Identification

SIPHT

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Diverse bacterial genomes encode numerous small non-coding RNAs (sRNAs) that regulate myriad biological processes. While bioinformatic algorithms have proven effective in identifying sRNA-encoding loci, the lack of tools and infrastructure with which to execute these computationally demanding algorithms has limited their utilization. Genome-wide predictions of sRNA-encoding genes have been conducted in less than 3% of all sequenced bacterial strains, leading to critical gaps in current annotations.

Rating: 
5
Average: 5 (2 votes)

miRNA Digger

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are important regulators of gene expression. The recent advances in high-throughput sequencing (HTS) technique have greatly facilitated large-scale detection of the miRNAs. However, thoroughly discovery of novel miRNAs from the available HTS data sets remains a major challenge. In this study, we observed that Dicer-mediated cleavage sites for the processing of the miRNA precursors could be mapped by using degradome sequencing data in both animals and plants.

Rating: 
Average: 5 (1 vote)

SEED

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Similarity clustering of next-generation sequences (NGS) is an important computational problem to study the population sizes of DNA/RNA molecules and to reduce the redundancies in NGS data. Currently, most sequence clustering algorithms are limited by their speed and scalability, and thus cannot handle data with tens of millions of reads.

Rating: 
Average: 5 (1 vote)

deepSOM

Submitted by ChenLiang on Sun, 01/08/2017 - 16:51

The computational prediction of novel microRNA within a full genome involves identifying sequences having the highest chance of being a miRNA precursor (pre-miRNA). These sequences are usually named candidates to miRNA. The well-known pre-miRNAs are usually only a few in comparison to the hundreds of thousands of potential candidates to miRNA that have to be analyzed, which makes this task a high classimbalance classification problem.

Rating: 
5
Average: 5 (2 votes)

iSmaRT

Submitted by ChenLiang on Mon, 01/09/2017 - 13:33

The interest in investigating the biological roles of small non-coding RNAs (sncRNAs) is increasing, due to the pleiotropic effects of these molecules exert in many biological contexts. While several methods and tools are available to study microRNAs (miRNAs), only few focus on novel classes of sncRNAs, in particular PIWI-interacting RNAs (piRNAs). To overcome these limitations, we implemented iSmaRT (integrative Small RNA Tool-kit), an automated pipeline to analyze smallRNA-Seq data.

Rating: 
Average: 5 (1 vote)

miRDis

Submitted by ChenLiang on Fri, 01/13/2017 - 10:33

Small RNA sequencing is the most widely used tool for microRNA (miRNA) discovery, and shows great potential for the efficient study of miRNA cross-species transport, i.e., by detecting the presence of exogenous miRNA sequences in the host species. Because of the increased appreciation of dietary miRNAs and their far-reaching implication in human health, research interests are currently growing with regard to exogenous miRNAs bioavailability, mechanisms of cross-species transport and miRNA function in cellular biological processes.

Rating: 
Average: 5 (1 vote)

miRSeqNovel

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

We present miRSeqNovel, an R based workflow for miRNA sequencing data analysis. miRSeqNovel can process both colorspace (SOLiD) and basespace (Illumina/Solexa) data by different mapping algorithms. It finds differentially expressed miRNAs and gives conservative prediction of novel miRNA candidates with customized parameters. miRSeqNovel is freely available at http://sourceforge.net/projects/mirseq/files.[1]

Rating: 
Average: 5 (1 vote)

mirnaDetect

Submitted by ChenLiang on Thu, 04/06/2017 - 19:28

MicroRNA (miRNA) plays an important role as a regulator in biological processes. Identification of (pre-)miRNAs helps in understanding regulatory processes. Machine learning methods have been designed for pre-miRNA identification. However, most of them cannot provide reliable predictive performances on independent testing datasets. We assumed this is because the training sets, especially the negative training sets, are not sufficiently representative.

Rating: 
Average: 5 (1 vote)

Semirna

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Many plant genomes are already known, and new ones are being sequenced every year. The next step for researchers is to identify all of the functional elements in these genomes, including the important class of functional elements known as microRNAs (miRNAs), which are involved in posttranscriptional regulatory pathways. However, computational tools for predicting new plant miRNAs are limited, and there is a particular need for tools that can be used easily by laboratory researchers.

Rating: 
Average: 5 (1 vote)

miRQuest

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

This report describes the miRQuest - a novel middleware available in a Web server that allows the end user to do the miRNA research in a user-friendly way. It is known that there are many prediction tools for microRNA (miRNA) identification that use different programming languages and methods to realize this task. It is difficult to understand each tool and apply it to diverse datasets and organisms available for miRNA analysis. miRQuest can easily be used by biologists and researchers with limited experience with bioinformatics.

Rating: 
5
Average: 4.5 (2 votes)

Pages

Subscribe to Identification