You are here

Zebrafish

RNAdualPF

Submitted by ChenLiang on Mon, 01/09/2017 - 10:11

BACKGROUND: RNA inverse folding is the problem of finding one or more sequences that fold into a user-specified target structure s 0, i.e. whose minimum free energy secondary structure is identical to the target s 0. Here we consider the ensemble of all RNA sequences that have low free energy with respect to a given target s 0. RESULTS: We introduce the program RNAdualPF, which computes the dual partition function Z (∗), defined as the sum of Boltzmann factors exp(-E(a,s 0)/RT) of all RNA nucleotide sequences a compatible with target structure s 0.

Rating: 
Average: 5 (1 vote)

Ebbie

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

DNA sequencing is used ubiquitously: from deciphering genomes to determining the primary sequence of small RNAs (smRNAs). The cloning of smRNAs is currently the most conventional method to determine the actual sequence of these important regulators of gene expression. Typical smRNA cloning projects involve the sequencing of hundreds to thousands of smRNA clones that are delimited at their 5' and 3' ends by fixed sequence regions. These primers result from the biochemical protocol used to isolate and convert the smRNA into clonable PCR products.

Rating: 
Average: 5 (1 vote)

SbacHTS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-throughput cell-based phenotypic screening has become an increasingly important technology for discovering new drug targets and assigning gene functions. Such experiments use hundreds of 96-well or 384-well plates, to cover whole-genome RNAi collections and/or chemical compound files, and often collect measurements that are sensitive to spatial background noise whose patterns can vary across individual plates. Correcting these position effects can substantially improve measurement accuracy and screening success.

Rating: 
Average: 5 (1 vote)

SubpathwayGMir

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) regulate disease-relevant metabolic pathways. However, most current pathway identification methods fail to consider miRNAs in addition to genes when analyzing pathways. We developed a powerful method called Subpathway-GMir to construct miRNA-regulated metabolic pathways and to identify miRNA-mediated subpathways by considering condition-specific genes, miRNAs, and pathway topologies. We used Subpathway-GMir to analyze two liver hepatocellular carcinomas (LIHC), one stomach adenocarcinoma (STAD), and one type 2 diabetes (T2D) data sets.

Rating: 
Average: 5 (1 vote)

VARIANT

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The massive use of Next-Generation Sequencing (NGS) technologies is uncovering an unexpected amount of variability. The functional characterization of such variability, particularly in the most common form of variation found, the Single Nucleotide Variants (SNVs), has become a priority that needs to be addressed in a systematic way.

Rating: 
Average: 5 (1 vote)

miRNAsong

Submitted by ChenLiang on Mon, 01/09/2017 - 10:33

MicroRNA (miRNA) sponges are RNA transcripts containing multiple high-affinity binding sites that associate with and sequester specific miRNAs to prevent them from interacting with their target messenger (m)RNAs. Due to the high specificity of miRNA sponges and strong inhibition of target miRNAs, these molecules have become increasingly applied in miRNA loss-of-function studies. However, improperly designed sponge constructs may sequester off-target miRNAs; thus, it has become increasingly important to develop a tool for miRNA sponge construct design and testing.

Rating: 
5
Average: 5 (2 votes)

PerM

Submitted by ChenLiang on Sun, 09/10/2017 - 20:07

The explosion of next-generation sequencing data has spawned the design of new algorithms and software tools to provide efficient mapping for different read lengths and sequencing technologies. In particular, ABI's sequencer (SOLiD system) poses a big computational challenge with its capacity to produce very large amounts of data, and its unique strategy of encoding sequence data into color signals.

Rating: 
Average: 5 (1 vote)

mirPRo

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Being involved in many important biological processes, miRNAs can regulate gene expression by targeting mRNAs to facilitate their degradation or translational inhibition. Many miRNA sequencing studies reveal that miRNA variations such as isomiRs and "arm switching" are biologically relevant. However, existing standalone tools usually do not provide comprehensive, detailed information on miRNA variations. To deepen our understanding of miRNA variability, we developed a new standalone tool called "mirPRo" to quantify known miRNAs and predict novel miRNAs.

Rating: 
Average: 5 (1 vote)

XTalkDB

Submitted by ChenLiang on Mon, 01/09/2017 - 10:48

Analysis of signaling pathways and their crosstalk is a cornerstone of systems biology. Thousands of papers have been published on these topics. Surprisingly, there is no database that carefully and explicitly documents crosstalk between specific pairs of signaling pathways. We have developed XTalkDB (http://www.xtalkdb.org) to fill this very important gap. XTalkDB contains curated information for 650 pairs of pathways from over 1600 publications. In addition, the database reports the molecular components (e.g.

Rating: 
Average: 5 (1 vote)

si-shRNA Selector

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Prediction of efficient oligonucleotides for RNA interference presents a serious challenge, especially for the development of genome-wide RNAi libraries which encounter difficulties and limitations due to ambiguities in the results and the requirement for significant computational resources. Here we present a fast and practical algorithm for shRNA design based on the thermodynamic parameters.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Zebrafish