mrsFAST
Abstract is not available.[1]
MicroRNAs (miRNAs) are a set of small non-coding RNAs serving as important negative gene regulators. In animals, miRNAs turn down protein translation by binding to the 3' UTR regions of target genes with imperfect complementary pairing. The identification of microRNA targets has become one of the major challenges of miRNA research. Bioinformatics investigations on miRNA target have resulted in a number of target prediction tools.
Along with computational approaches, NGS led technologies have caused a major impact upon the discoveries made in the area of miRNA biology, including novel miRNAs identification. However, to this date all microRNA discovery tools compulsorily depend upon the availability of reference or genomic sequences. Here, for the first time a novel approach, miReader, has been introduced which could discover novel miRNAs without any dependence upon genomic/reference sequences.
The high complexity and dynamic nature of the regulation of gene expression, protein synthesis, and protein activity pose a challenge to fully understand the cellular machinery. By deciphering the role of important players, including transcription factors, microRNAs, or small molecules, a better understanding of key regulatory processes can be obtained. Various databases contain information on the interactions of regulators with their targets for different organisms, data recently being extended with the results of the ENCODE (Encyclopedia of DNA Elements) project.
Transcriptome profiling studies have produced staggering numbers of gene co-expression signatures for a variety of biological systems. A significant fraction of these signatures will be partially or fully explained by miRNA-mediated targeted transcript degradation. miRvestigator takes as input lists of co-expressed genes from Caenorhabditis elegans, Drosophila melanogaster, G. gallus, Homo sapiens, Mus musculus or Rattus norvegicus and identifies the specific miRNAs that are likely to bind to 3' un-translated region (UTR) sequences to mediate the observed co-regulation.
Piwi proteins and their guiding small RNAs, termed Piwi-interacting (pi-) RNAs, are essential for silencing of transposons in the germline of animals. A substantial fraction of piRNAs originates from genomic loci termed piRNA clusters and sequences encoded in these piRNA clusters determine putative targets for the Piwi/piRNA system. In the past decade, studies of piRNA transcriptomes in different species revealed additional roles for piRNAs beyond transposon silencing, reflecting the astonishing plasticity of the Piwi/piRNA system along different phylogenetic branches.
Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking.
MicroRNAs (miRNAs) are endogenous non-protein-coding RNAs of approximately 22 nucleotides. Thousands of miRNA genes have been identified (computationally and/or experimentally) in a variety of organisms, which suggests that miRNA genes have been widely shared and distributed among species. Here, we used unique miRNA sequence patterns to scan the genome sequences of 56 bilaterian animal species for locating candidate miRNAs first.
microRNA expression and sequence analysis database (http://konulab.fen.bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language.
Non-coding RNA (ncRNA) PROfiling in small RNA (sRNA)-seq (ncPRO-seq) is a stand-alone, comprehensive and flexible ncRNA analysis pipeline. It can interrogate and perform detailed profiling analysis on sRNAs derived from annotated non-coding regions in miRBase, Rfam and RepeatMasker, as well as specific regions defined by users. The ncPRO-seq pipeline performs both gene-based and family-based analyses of sRNAs.