You are here

Rat

MiRAlign

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNA) are approximately 22 nt long non-coding RNAs that are derived from larger hairpin RNA precursors and play important regulatory roles in both animals and plants. The short length of the miRNA sequences and relatively low conservation of pre-miRNA sequences restrict the conventional sequence-alignment-based methods to finding only relatively close homologs. On the other hand, it has been reported that miRNA genes are more conserved in the secondary structure rather than in primary sequences.

Rating: 
Average: 5 (1 vote)

miR-abela

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are endogenous 21 to 23-nucleotide RNA molecules that regulate protein-coding gene expression in plants and animals via the RNA interference pathway. Hundreds of them have been identified in the last five years and very recent works indicate that their total number is still larger. Therefore miRNAs gene discovery remains an important aspect of understanding this new and still widely unknown regulation mechanism. Bioinformatics approaches have proved to be very useful toward this goal by guiding the experimental investigations.

Rating: 
Average: 5 (1 vote)

miRNAkey

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are short abundant non-coding RNAs critical for many cellular processes. Deep sequencing (next-generation sequencing) technologies are being readily used to receive a more accurate depiction of miRNA expression profiles in living cells. This type of analysis is a key step towards improving our understanding of the complexity and mode of miRNA regulation.

Rating: 
Average: 5 (1 vote)

miRNASNP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are studied as key regulators of gene expression involved in different diseases. Several single nucleotide polymorphisms (SNPs) in miRNA genes or target sites (miRNA-related SNPs) have been proved to be associated with human diseases by affecting the miRNA-mediated regulatory function. To systematically analyze miRNA-related SNPs and their effects, we performed a genome-wide scan for SNPs in human pre-miRNAs, miRNA flanking regions, target sites, and designed a pipeline to predict the effects of them on miRNA-target interaction.

Rating: 
Average: 5 (1 vote)

GraphWeb

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Deciphering heterogeneous cellular networks with embedded modules is a great challenge of current systems biology. Experimental and computational studies construct complex networks of molecules that describe various aspects of the cell such as transcriptional regulation, protein interactions and metabolism. Groups of interacting genes and proteins reflect network modules that potentially share regulatory mechanisms and relate to common function. Here, we present GraphWeb, a public web server for biological network analysis and module discovery.

Rating: 
Average: 5 (1 vote)

DSAP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

DSAP is an automated multiple-task web service designed to provide a total solution to analyzing deep-sequencing small RNA datasets generated by next-generation sequencing technology. DSAP uses a tab-delimited file as an input format, which holds the unique sequence reads (tags) and their corresponding number of copies generated by the Solexa sequencing platform.

Rating: 
Average: 5 (1 vote)

UCbase & miRfunc

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Four hundred and eighty-one ultraconserved sequences (UCRs) longer than 200 bases were discovered in the genomes of human, mouse and rat. These are DNA sequences showing 100% identity among the three species. UCRs are frequently located at genomic regions involved in cancer, differentially expressed in human leukemias and carcinomas and in some instances regulated by microRNAs (miRNAs). Here we present UCbase & miRfunc, the first database which provides ultraconserved sequences data and shows miRNA function.

Rating: 
Average: 5 (1 vote)

More complete gene silencing by fewer siRNAs

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Highly accurate knockdown functional analyses based on RNA interference (RNAi) require the possible most complete hydrolysis of the targeted mRNA while avoiding the degradation of untargeted genes (off-target effects). This in turn requires significant improvements to target selection for two reasons. First, the average silencing activity of randomly selected siRNAs is as low as 62%. Second, applying more than five different siRNAs may lead to saturation of the RNA-induced silencing complex (RISC) and to the degradation of untargeted genes.

Rating: 
Average: 5 (1 vote)

PASS

Submitted by ChenLiang on Sun, 09/10/2017 - 20:05

Standard DNA alignment programs are inadequate to manage the data produced by new generation DNA sequencers. To answer this problem, we developed PASS with the objective of improving execution time and sensitivity when compared with other available programs. PASS performs fast gapped and ungapped alignments of short DNA sequences onto a reference DNA, typically a genomic sequence. It is designed to handle a huge amount of reads such as those generated by Solexa, SOLiD or 454 technologies.

Rating: 
Average: 5 (1 vote)

CluePedia

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The CluePedia Cytoscape plugin is a search tool for new markers potentially associated to pathways. CluePedia calculates linear and non-linear statistical dependencies from experimental data. Genes, proteins and miRNAs can be connected based on in silico and/or experimental information and integrated into a ClueGO network of terms/pathways. Interrelations within each pathway can be investigated, and new potential associations may be revealed through gene/protein/miRNA enrichments. A pathway-like visualization can be created using the Cerebral plugin layout.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Rat