You are here

Rat

mirnasvm

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are a group of short (approximately 22 nt) non-coding RNAs that play important regulatory roles. MiRNA precursors (pre-miRNAs) are characterized by their hairpin structures. However, a large amount of similar hairpins can be folded in many genomes. Almost all current methods for computational prediction of miRNAs use comparative genomic approaches to identify putative pre-miRNAs from candidate hairpins. Ab initio method for distinguishing pre-miRNAs from sequence segments with pre-miRNA-like hairpin structures is lacking.

Rating: 
Average: 5 (1 vote)

TargetSpy

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Virtually all currently available microRNA target site prediction algorithms require the presence of a (conserved) seed match to the 5' end of the microRNA. Recently however, it has been shown that this requirement might be too stringent, leading to a substantial number of missed target sites.

Rating: 
Average: 5 (1 vote)

RegRNA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Numerous regulatory structural motifs have been identified as playing essential roles in transcriptional and post-transcriptional regulation of gene expression. RegRNA is an integrated web server for identifying the homologs of regulatory RNA motifs and elements against an input mRNA sequence. Both sequence homologs and structural homologs of regulatory RNA motifs can be recognized.

Rating: 
Average: 5 (1 vote)

miRmap

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs, or miRNAs, post-transcriptionally repress the expression of protein-coding genes. The human genome encodes over 1000 miRNA genes that collectively target the majority of messenger RNAs (mRNAs). Base pairing of the so-called miRNA 'seed' region with mRNAs identifies many thousands of putative targets. Evaluating the strength of the resulting mRNA repression remains challenging, but is essential for a biologically informative ranking of potential miRNA targets.

Rating: 
Average: 5 (1 vote)

miRSel

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs have been discovered as important regulators of gene expression. To identify the target genes of microRNAs, several databases and prediction algorithms have been developed. Only few experimentally confirmed microRNA targets are available in databases. Many of the microRNA targets stored in databases were derived from large-scale experiments that are considered not very reliable. We propose to use text mining of publication abstracts for extracting microRNA-gene associations including microRNA-target relations to complement current repositories.

Rating: 
Average: 5 (1 vote)

SVMicrO

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing.

Rating: 
Average: 5 (1 vote)

miPred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

To distinguish the real pre-miRNAs from other hairpin sequences with similar stem-loops (pseudo pre-miRNAs), a hybrid feature which consists of local contiguous structure-sequence composition, minimum of free energy (MFE) of the secondary structure and P-value of randomization test is used. Besides, a novel machine-learning algorithm, random forest (RF), is introduced. The results suggest that our method predicts at 98.21% specificity and 95.09% sensitivity.

Rating: 
Average: 5 (1 vote)

mirTools

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

miRNAs are small, non-coding RNA that negatively regulate gene expression at post-transcriptional level, which play crucial roles in various physiological and pathological processes, such as development and tumorigenesis. Although deep sequencing technologies have been applied to investigate various small RNA transcriptomes, their computational methods are far away from maturation as compared to microarray-based approaches. In this study, a comprehensive web server mirTools was developed to allow researchers to comprehensively characterize small RNA transcriptome.

Rating: 
Average: 5 (1 vote)

siRecords

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Short interfering RNAs (siRNAs) have been gaining popularity as the gene knock-down tool of choice by many researchers because of the clean nature of their workings as well as the technical simplicity and cost efficiency in their applications. We have constructed siRecords, a database of siRNAs experimentally tested by researchers with consistent efficacy ratings.

Rating: 
Average: 5 (1 vote)

MAGIA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MAGIA (miRNA and genes integrated analysis) is a novel web tool for the integrative analysis of target predictions, miRNA and gene expression data. MAGIA is divided into two parts: the query section allows the user to retrieve and browse updated miRNA target predictions computed with a number of different algorithms (PITA, miRanda and Target Scan) and Boolean combinations thereof.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Rat