You are here

Maize

Ebbie

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

DNA sequencing is used ubiquitously: from deciphering genomes to determining the primary sequence of small RNAs (smRNAs). The cloning of smRNAs is currently the most conventional method to determine the actual sequence of these important regulators of gene expression. Typical smRNA cloning projects involve the sequencing of hundreds to thousands of smRNA clones that are delimited at their 5' and 3' ends by fixed sequence regions. These primers result from the biochemical protocol used to isolate and convert the smRNA into clonable PCR products.

Rating: 
Average: 5 (1 vote)

LimiTT

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) impact various biological processes within animals and plants. They complementarily bind target mRNAs, effecting a post-transcriptional negative regulation on mRNA level. The investigation of miRNA target interactions (MTIs) by high throughput screenings is challenging, as frequently used in silico target prediction tools are prone to emit false positives. This issue is aggravated for niche model organisms, where validated miRNAs and MTIs both have to be transferred from well described model organisms.

Rating: 
5
Average: 4.5 (2 votes)

miRLocator

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are a class of short, non-coding RNA that play regulatory roles in a wide variety of biological processes, such as plant growth and abiotic stress responses. Although several computational tools have been developed to identify primary miRNAs and precursor miRNAs (pre-miRNAs), very few provide the functionality of locating mature miRNAs within plant pre-miRNAs.

Rating: 
Average: 5 (1 vote)

PceRBase

Submitted by ChenLiang on Mon, 01/09/2017 - 11:38

Competition for microRNA (miRNA) binding between RNA molecules has emerged as a novel mechanism for the regulation of eukaryotic gene expression. Competing endogenous RNA (ceRNA) can act as decoys for miRNA binding, thereby forming a ceRNA network by regulating the abundance of other RNA transcripts which share the same or similar microRNA response elements. Although this type of RNA cross talk was first described in Arabidopsis, and was subsequently shown to be active in animal models, there is no database collecting potential ceRNA data for plants.

Rating: 
Average: 5 (1 vote)

si-shRNA Selector

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Prediction of efficient oligonucleotides for RNA interference presents a serious challenge, especially for the development of genome-wide RNAi libraries which encounter difficulties and limitations due to ambiguities in the results and the requirement for significant computational resources. Here we present a fast and practical algorithm for shRNA design based on the thermodynamic parameters.

Rating: 
Average: 5 (1 vote)

PmiRExAt

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-throughput small RNA (sRNA) sequencing technology enables an entirely new perspective for plant microRNA (miRNA) research and has immense potential to unravel regulatory networks. Novel insights gained through data mining in publically available rich resource of sRNA data will help in designing biotechnology-based approaches for crop improvement to enhance plant yield and nutritional value. Bioinformatics resources enabling meta-analysis of miRNA expression across multiple plant species are still evolving.

Rating: 
Average: 5 (1 vote)

mirPRo

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Being involved in many important biological processes, miRNAs can regulate gene expression by targeting mRNAs to facilitate their degradation or translational inhibition. Many miRNA sequencing studies reveal that miRNA variations such as isomiRs and "arm switching" are biologically relevant. However, existing standalone tools usually do not provide comprehensive, detailed information on miRNA variations. To deepen our understanding of miRNA variability, we developed a new standalone tool called "mirPRo" to quantify known miRNAs and predict novel miRNAs.

Rating: 
Average: 5 (1 vote)

PerM

Submitted by ChenLiang on Sun, 09/10/2017 - 20:07

The explosion of next-generation sequencing data has spawned the design of new algorithms and software tools to provide efficient mapping for different read lengths and sequencing technologies. In particular, ABI's sequencer (SOLiD system) poses a big computational challenge with its capacity to produce very large amounts of data, and its unique strategy of encoding sequence data into color signals.

Rating: 
Average: 5 (1 vote)

SMIRP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The prediction of novel pre-microRNA (miRNA) from genomic sequence has received considerable attention recently. However, the majority of studies have focused on the human genome. Previous studies have demonstrated that sensitivity (correctly detecting true miRNA) is sustained when human-trained methods are applied to other species, however they have failed to report the dramatic drop in specificity (the ability to correctly reject non-miRNA sequences) in non-human genomes.

Rating: 
Average: 5 (1 vote)

CARD

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

RNAi screens are widely used in functional genomics. Although the screen data can be susceptible to a number of experimental biases, many of these can be corrected by computational analysis. For this purpose, here we have developed a web-based platform for integrated analysis and visualization of RNAi screen data named CARD (for Comprehensive Analysis of RNAi Data; available at https://card.niaid.nih.gov).

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Maize