You are here

Maize

SparseMFEFold

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

RNA secondary structure prediction by energy minimization is the central computational tool for the analysis of structural non-coding RNAs and their interactions. Sparsification has been successfully applied to improve the time efficiency of various structure prediction algorithms while guaranteeing the same result; however, for many such folding problems, space efficiency is of even greater concern, particularly for long RNA sequences.

Rating: 
Average: 5 (1 vote)

RNAdualPF

Submitted by ChenLiang on Mon, 01/09/2017 - 10:11

BACKGROUND: RNA inverse folding is the problem of finding one or more sequences that fold into a user-specified target structure s 0, i.e. whose minimum free energy secondary structure is identical to the target s 0. Here we consider the ensemble of all RNA sequences that have low free energy with respect to a given target s 0. RESULTS: We introduce the program RNAdualPF, which computes the dual partition function Z (∗), defined as the sum of Boltzmann factors exp(-E(a,s 0)/RT) of all RNA nucleotide sequences a compatible with target structure s 0.

Rating: 
Average: 5 (1 vote)

findr

Submitted by ChenLiang on Sun, 09/10/2017 - 16:57

Mapping gene expression as a quantitative trait using whole genome-sequencing and transcriptome analysis allows to discover the functional consequences of genetic variation. We developed a novel method and ultra-fast software Findr for higly accurate causal inference between gene expression traits using cis-regulatory DNA variations as causal anchors, which improves current methods by taking into consideration hidden confounders and weak regulations.

Rating: 
Average: 5 (1 vote)

RDMAS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The diverse functions of ncRNAs critically depend on their structures. Mutations in ncRNAs disrupting the structures of functional sites are expected to be deleterious. RNA deleterious mutations have attracted wide attentions because some of them in cells result in serious disease, and some others in microbes influence their fitness.

Rating: 
Average: 5 (1 vote)

isomiR2Function

Submitted by ChenLiang on Sun, 09/10/2017 - 17:11

In plants, post transcriptional regulation by non-coding RNAs (ncRNAs), in particular miRNAs (19-24 nt) has been involved in modulating the transcriptional landscape in developmental, biotic and abiotic interactions. In past few years, considerable focus has been leveraged on delineating and deciphering the role of miRNAs and their canonical isomiRs in plants. However, proper classification and accurate prediction of plant isomiRs taking into account the relative features by which we define isomiRs, such as templated or non-templated is still lacking.

Rating: 
Average: 5 (1 vote)

SEED

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Similarity clustering of next-generation sequences (NGS) is an important computational problem to study the population sizes of DNA/RNA molecules and to reduce the redundancies in NGS data. Currently, most sequence clustering algorithms are limited by their speed and scalability, and thus cannot handle data with tens of millions of reads.

Rating: 
Average: 5 (1 vote)

P-SAMS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The Plant Small RNA Maker Site (P-SAMS) is a web tool for the simple and automated design of artificial miRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs) for efficient and specific targeted gene silencing in plants. P-SAMS includes two applications, P-SAMS amiRNA Designer and P-SAMS syn-tasiRNA Designer. The navigation through both applications is wizard-assisted, and the job runtime is relatively short.

Rating: 
5
Average: 4.5 (2 votes)

MiRAuto

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are a class of small RNAs that post-transcriptionally regulate gene expression in animals and plants. The recent rapid advancement in miRNA biology, including high-throughput sequencing of small RNA libraries, inspired the development of a bioinformatics software, miRAuto, which predicts putative miRNAs in model plant genomes computationally. Furthermore, miRAuto enables users to identify miRNAs in non-model plant species whose genomes have yet to be fully sequenced.

Rating: 
Average: 5 (1 vote)

miRNAsong

Submitted by ChenLiang on Mon, 01/09/2017 - 10:33

MicroRNA (miRNA) sponges are RNA transcripts containing multiple high-affinity binding sites that associate with and sequester specific miRNAs to prevent them from interacting with their target messenger (m)RNAs. Due to the high specificity of miRNA sponges and strong inhibition of target miRNAs, these molecules have become increasingly applied in miRNA loss-of-function studies. However, improperly designed sponge constructs may sequester off-target miRNAs; thus, it has become increasingly important to develop a tool for miRNA sponge construct design and testing.

Rating: 
5
Average: 5 (2 votes)

PeTMbase

Submitted by ChenLiang on Mon, 01/09/2017 - 11:31

MicroRNAs (miRNA) are small endogenous RNA molecules, which regulate target gene expression at post-transcriptional level. Besides, miRNA activity can be controlled by a newly discovered regulatory mechanism called endogenous target mimicry (eTM). In target mimicry, eTMs bind to the corresponding miRNAs to block the binding of specific transcript leading to increase mRNA expression. Thus, miRNA-eTM-target-mRNA regulation modules involving a wide range of biological processes; an increasing need for a comprehensive eTM database arose.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Maize