You are here

Human

FREM

Submitted by ChenLiang on Mon, 01/09/2017 - 10:25

MicroRNAs (miRNAs) are known as an important indicator of cancers. Presence of cancer can be detected by identifying the responsible miRNAs. A fuzzy-rough entropy measure (FREM) is developed which can rank the miRNAs and thereby identifying the relevant ones. FREM is used to determine the relevance of a miRNA in terms of separability between normal and cancer classes. While computing the FREM for a miRNA, fuzziness takes care of the overlapping between normal and cancer expressions, whereas rough lower approximation determines their class sizes.

Rating: 
Average: 5 (1 vote)

SNPLogic

Submitted by ChenLiang on Thu, 04/06/2017 - 19:12

SNPLogic (http://www.snplogic.org) brings together single nucleotide polymorphism (SNP) information from numerous sources to provide a comprehensive SNP selection, annotation and prioritization system for design and analysis of genotyping projects.

Rating: 
Average: 5 (1 vote)

1-CMDb

Submitted by ChenLiang on Sun, 09/10/2017 - 16:31

The one-carbon metabolism pathway is vital in maintaining tissue homeostasis by driving the critical reactions of folate and methionine cycles. A myriad of genetic and epigenetic events mark the rate of reactions in a tissue-specific manner. Integration of these to predict and provide personalized health management requires robust computational tools that can process multiomics data. The DNA sequences that may determine the chain of biological events and the endpoint reactions within one-carbon metabolism genes remain to be comprehensively recorded.

Rating: 
Average: 5 (1 vote)

miRTarVis+

Submitted by ChenLiang on Sun, 09/10/2017 - 20:31

In this paper, we present miRTarVis+, a Web-based interactive visual analytics tool for miRNA target predictions and integrative analyses of multiple prediction results. Various microRNA (miRNA) target prediction algorithms have been developed to improve sequence-based miRNA target prediction by exploiting miRNA-mRNA expression profile data. There are also a few analytics tools to help researchers predict targets of miRNAs.

Rating: 
Average: 5 (1 vote)

BioSeq-Analysis

Submitted by ChenLiang on Tue, 01/09/2018 - 17:37

With the avalanche of biological sequences generated in the post-genomic age, one of the most challenging problems is how to computationally analyze their structures and functions. Machine learning techniques are playing key roles in this field. Typically, predictors based on machine learning techniques contain three main steps: feature extraction, predictor construction and performance evaluation. Although several Web servers and stand-alone tools have been developed to facilitate the biological sequence analysis, they only focus on individual step.

Rating: 
Average: 5 (1 vote)

ShrinkBayes

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Complex designs are common in (observational) clinical studies. Sequencing data for such studies are produced more and more often, implying challenges for the analysis, such as excess of zeros, presence of random effects and multi-parameter inference. Moreover, when sample sizes are small, inference is likely to be too liberal when, in a Bayesian setting, applying a non-appropriate prior or to lack power when not carefully borrowing information across features.

Rating: 
Average: 5 (1 vote)

JBCB

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Current miRNA target prediction tools have the common problem that their false positive rate is high. This renders identification of co-regulating groups of miRNAs and target genes unreliable. In this study, we describe a procedure to identify highly probable co-regulating miRNAs and the corresponding co-regulated gene groups.

Rating: 
Average: 5 (1 vote)

MDTE DB

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs are crucial regulators of gene expression at post-transcriptional level. Understanding origin and evolution of miRNAs and their functions. Transposable elements (TEs) provide a natural mechanism for the origin of new miRNAs derived from TEs (MDTEs) were collected to contruct a database named MDTE database (MDTE DB) for storing, searching and analyzing MDTEs. The database proveds a convenient source for studying the origin and evolution of miRNAs.[1]

Rating: 
Average: 5 (1 vote)

IsomiR Bank

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

: Next-Generation Sequencing (NGS) technology has revealed that microRNAs (miRNAs) are capable of exhibiting frequent differences from their corresponding mature reference sequences, generating multiple variants: the isoforms of miRNAs (isomiRs). These isomiRs mainly originate via the imprecise and alternative cleavage during the pre-miRNA processing and post-transcriptional modifications that influence miRNA stability, their sub-cellular localization and target selection.

Rating: 
Average: 5 (1 vote)

miRpower

Submitted by ChenLiang on Fri, 10/21/2016 - 16:39

PURPOSE: The proper validation of prognostic biomarkers is an important clinical issue in breast cancer research. MicroRNAs (miRNAs) have emerged as a new class of promising breast cancer biomarkers. In the present work, we developed an integrated online bioinformatic tool to validate the prognostic relevance of miRNAs in breast cancer. METHODS: A database was set up by searching the GEO, EGA, TCGA, and PubMed repositories to identify datasets with published miRNA expression and clinical data.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Human