You are here

Human

miR_Path

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are short non-coding RNAs that play important roles in post-transcriptional regulations as well as other important biological processes. Recently, accumulating evidences indicate that miRNAs are extensively involved in cancer. However, it is a big challenge to identify which miRNAs are related to which cancer considering the complex processes involved in tumors, where one miRNA may target hundreds or even thousands of genes and one gene may regulate multiple miRNAs.

Rating: 
Average: 5 (1 vote)

MetaMirClust

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recent emerging studies suggest that a substantial fraction of microRNA (miRNA) genes is likely to form clusters in terms of evolutionary conservation and biological implications, posing a significant challenge for the research community and shifting the bottleneck of scientific discovery from miRNA singletons to miRNA clusters. In addition, the advance in molecular sequencing technique such as next-generation sequencing (NGS) has facilitated researchers to comprehensively characterize miRNAs with low abundance on genome-wide scale in multiple species.

Rating: 
5
Average: 4.5 (2 votes)

SCLC

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Small cell lung carcinoma (SCLC) is an aggressive, recalcitrant cancer, often metastatic at diagnosis and unresponsive to chemotherapy upon recurrence, thus it is challenging to treat.

Rating: 
3
Average: 3 (2 votes)

LncEnvironmentDB

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The complex traits of an organism are associated with a complex interplay between genetic factors (GFs) and environmental factors (EFs). However, compared with protein-coding genes and microRNAs, there is a paucity of computational methods and bioinformatic resource platform for understanding the associations between lncRNA and EF.

Rating: 
Average: 5 (1 vote)

biRte

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In the last years there has been an increasing effort to computationally model and predict the influence of regulators (transcription factors, miRNAs) on gene expression. Here we introduce biRte as a computationally attractive approach combining Bayesian inference of regulator activities with network reverse engineering. biRte integrates target gene predictions with different omics data entities (e.g. miRNA and mRNA data) into a joint probabilistic framework.

Rating: 
Average: 5 (1 vote)

NoiseMaker

Submitted by ChenLiang on Thu, 04/06/2017 - 18:47

High-throughput screening (HTS) is a common technique for both drug discovery and basic research, but researchers often struggle with how best to derive hits from HTS data. While a wide range of hit identification techniques exist, little information is available about their sensitivity and specificity, especially in comparison to each other. To address this, we have developed the open-source NoiseMaker software tool for generation of realistically noisy virtual screens.

Rating: 
Average: 5 (1 vote)

ImmunemiR

Submitted by ChenLiang on Thu, 04/06/2017 - 19:19

MicroRNAs are a class of small non-coding regulatory RNA molecules that modulate the expression of several genes at post-transcriptional level and play a vital role in disease pathogenesis. Recent research shows that a range of miRNAs are involved in the regulation of immunity and its deregulation results in immune mediated diseases such as cancer, inflammation and autoimmune diseases. Computational discovery of these immune miRNAs using a set of specific features is highly desirable.

Rating: 
Average: 5 (1 vote)

deepboost

Submitted by ChenLiang on Sun, 09/10/2017 - 16:53

Characterizing the binding behaviors of RNA-binding proteins (RBPs) is important for understanding their functional roles in gene expression regulation. However, current high-throughput experimental methods for identifying RBP targets, such as CLIP-seq and RNAcompete, usually suffer from the false negative issue. Here, we develop a deep boosting based machine learning approach, called DeBooster, to accurately model the binding sequence preferences and identify the corresponding binding targets of RBPs from CLIP-seq data.

Rating: 
Average: 5 (1 vote)

PheLiM

Submitted by ChenLiang on Sun, 09/10/2017 - 20:10

RNAi is broadly used to map gene regulatory networks, but the identification of genes that are responsible for the observed phenotypes is challenging, assmall interfering RNAs (siRNAs) simultaneously downregulate the intended on targets and many partially complementary off targets. Additionally, the scarcity of publicly available control datasets hinders the development and comparative evaluation of computational methods for analyzing the data.

Rating: 
Average: 5 (1 vote)

IMOTA

Submitted by ChenLiang on Tue, 01/09/2018 - 17:02

Web repositories for almost all 'omics' types have been generated-detailing the repertoire of representatives across different tissues or cell types. A logical next step is the combination of these valuable sources. With IMOTA (interactive multi omics tissue atlas), we developed a database that includes 23 725 relations between miRNAs and 23 tissues, 310 932 relations between mRNAs and the same tissues as well as 63 043 relations between proteins and the 23 tissues in Homo sapiens. IMOTA also contains data on tissue-specific interactions, e.g.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Human