You are here

Human

miCancerna

Submitted by ChenLiang on Tue, 01/09/2018 - 19:19

Associating microRNAs (miRNAs) with cancers is an important step of understanding the mechanisms of cancer pathogenesis and finding novel biomarkers for cancer therapies. In this study, we constructed a miRNA-cancer association network (miCancerna) based on more than 1,000 miRNA-cancer associations detected from millions of abstracts with the text-mining method, including 226 miRNA families and 20 common cancers.

Rating: 
5
Average: 5 (2 votes)

MD-SeeGH

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recent advances in global genomic profiling methodologies have enabled multi-dimensional characterization of biological systems. Complete analysis of these genomic profiles require an in depth look at parallel profiles of segmental DNA copy number status, DNA methylation state, single nucleotide polymorphisms, as well as gene expression profiles. Due to the differences in data types it is difficult to conduct parallel analysis of multiple datasets from diverse platforms.

Rating: 
Average: 5 (1 vote)

UP-TORR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

RNA interference (RNAi) is a widely adopted tool for loss-of-function studies but RNAi results only have biological relevance if the reagents are appropriately mapped to genes. Several groups have designed and generated RNAi reagent libraries for studies in cells or in vivo for Drosophila and other species. At first glance, matching RNAi reagents to genes appears to be a simple problem, as each reagent is typically designed to target a single gene. In practice, however, the reagent-gene relationship is complex.

Rating: 
Average: 5 (1 vote)

Cepred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Identifying the tissues in which a microRNA is expressed could enhance the understanding of the functions, the biological processes, and the diseases associated with that microRNA. However, the mechanisms of microRNA biogenesis and expression remain largely unclear and the identification of the tissues in which a microRNA is expressed is limited.

Rating: 
Average: 5 (1 vote)

MysiRNA-designer

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The design of small interfering RNA (siRNA) is a multi factorial problem that has gained the attention of many researchers in the area of therapeutic and functional genomics. MysiRNA score was previously introduced that improves the correlation of siRNA activity prediction considering state of the art algorithms. In this paper, a new program, MysiRNA-Designer, is described which integrates several factors in an automated work-flow considering mRNA transcripts variations, siRNA and mRNA target accessibility, and both near-perfect and partial off-target matches.

Rating: 
Average: 5 (1 vote)

BiTargeting

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs (20-24 nts) that can affect gene expression by post-transcriptional regulation of mRNAs. They play important roles in several biological processes (e.g., development and cell cycle regulation). Numerous bioinformatics methods have been developed to identify the function of miRNAs by predicting their target mRNAs. Some viral organisms also encode miRNAs, a fact that contributes to the complex interactions between viruses and their hosts.

Rating: 
Average: 5 (1 vote)

RNALOSS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

RNAomics, analogous to proteomics, concerns aspects of the secondary and tertiary structure, folding pathway, kinetics, comparison, function and regulation of all RNA in a living organism. Given recently discovered roles played by micro RNA, small interfering RNA, riboswitches, ribozymes, etc., it is important to gain insight into the folding process of RNA sequences. We describe the web server RNALOSS, which provides information about the distribution of locally optimal secondary structures, that possibly form kinetic traps in the folding process.

Rating: 
Average: 5 (1 vote)

SBM

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Experimental identification of microRNA (miRNA) targets is a difficult and time consuming process. As a consequence several computational prediction methods have been devised in order to predict targets for follow up experimental validation. Current computational target prediction methods use only the miRNA sequence as input. With an increasing number of experimentally validated targets becoming available, utilising this additional information in the search for further targets may help to improve the specificity of computational methods for target site prediction.

Rating: 
Average: 5 (1 vote)

ncPred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Over the past few years, experimental evidence has highlighted the role of microRNAs to human diseases. miRNAs are critical for the regulation of cellular processes, and, therefore, their aberration can be among the triggering causes of pathological phenomena. They are just one member of the large class of non-coding RNAs, which include transcribed ultra-conserved regions (T-UCRs), small nucleolar RNAs (snoRNAs), PIWI-interacting RNAs (piRNAs), large intergenic non-coding RNAs (lincRNAs) and, the heterogeneous group of long non-coding RNAs (lncRNAs).

Rating: 
Average: 5 (1 vote)

miRTar Hunter

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are important regulators of gene expression and play crucial roles in many biological processes including apoptosis, differentiation, development, and tumorigenesis. Recent estimates suggest that more than 50% of human protein coding genes may be regulated by miRNAs and that each miRNA may bind to 300-400 target genes. Approximately 1,000 human miRNAs have been identified so far with each having up to hundreds of unique target mRNAs.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Human