You are here

miRTar Hunter

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Status:

Platform:

Implement Technique:

Species:

Pubmed IDs: 
Rating: 
Average: 5 (1 vote)

MicroRNAs (miRNAs) are important regulators of gene expression and play crucial roles in many biological processes including apoptosis, differentiation, development, and tumorigenesis. Recent estimates suggest that more than 50% of human protein coding genes may be regulated by miRNAs and that each miRNA may bind to 300-400 target genes. Approximately 1,000 human miRNAs have been identified so far with each having up to hundreds of unique target mRNAs. However, the targets for a majority of these miRNAs have not been identified due to the lack of large-scale experimental detection techniques. Experimental detection of miRNA target sites is a costly and time-consuming process, even though identification of miRNA targets is critical to unraveling their functions in various biological processes. To identify miRNA targets, we developed miRTar Hunter, a novel computational approach for predicting target sites regardless of the presence or absence of a seed match or evolutionary sequence conservation. Our approach is based on a dynamic programming algorithm that incorporates more sequence-specific features and reflects the properties of various types of target sites that determine diverse aspects of complementarities between miRNAs and their targets. We evaluated the performance of our algorithm on 532 known human miRNA:target pairs and 59 experimentally-verified negative miRNA:target pairs, and also compared our method with three popular programs for 481 miRNA:target pairs. miRTar Hunter outperformed three popular existing algorithms in terms of recall and precision, indicating that our unique scheme to quantify the determinants of complementary sites is effective at detecting miRNA targets. miRTar Hunter is now available at http://203.230.194.162/~kbkim.[1]


References

  1. miRTar Hunter: a prediction system for identifying human microRNA target sites.,
    Park, Kiejung, and Kim Ki-Bong
    , Mol Cells, 2013 Mar, Volume 35, Issue 3, p.195-201, (2013)