You are here

Fruitfly

GenomeRNAi

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an important challenge remains the systematic integration and annotation of functional information.

Rating: 
Average: 5 (1 vote)

FlyRNAi

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

RNA interference (RNAi) has become a powerful tool for genetic screening in Drosophila. At the Drosophila RNAi Screening Center (DRSC), we are using a library of over 21,000 double-stranded RNAs targeting known and predicted genes in Drosophila. This library is available for the use of visiting scientists wishing to perform full-genome RNAi screens.

Rating: 
5
Average: 4.5 (2 votes)

NBmiRTar

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Most computational methodologies for miRNA:mRNA target gene prediction use the seed segment of the miRNA and require cross-species sequence conservation in this region of the mRNA target. Methods that do not rely on conservation generate numbers of predictions, which are too large to validate. We describe a target prediction method (NBmiRTar) that does not require sequence conservation, using instead, machine learning by a nave Bayes classifier.

Rating: 
Average: 5 (1 vote)

DEQOR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

RNA interference (RNAi) is a powerful tool for inhibiting the expression of a gene by mediating the degradation of the corresponding mRNA. The basis of this gene-specific inhibition is small, double-stranded RNAs (dsRNAs), also referred to as small interfering RNAs (siRNAs), that correspond in sequence to a part of the exon sequence of a silenced gene. The selection of siRNAs for a target gene is a crucial step in siRNA-mediated gene silencing.

Rating: 
Average: 5 (1 vote)

MAGIA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MAGIA (miRNA and genes integrated analysis) is a novel web tool for the integrative analysis of target predictions, miRNA and gene expression data. MAGIA is divided into two parts: the query section allows the user to retrieve and browse updated miRNA target predictions computed with a number of different algorithms (PITA, miRanda and Target Scan) and Boolean combinations thereof.

Rating: 
Average: 5 (1 vote)

MiRAlign

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNA) are approximately 22 nt long non-coding RNAs that are derived from larger hairpin RNA precursors and play important regulatory roles in both animals and plants. The short length of the miRNA sequences and relatively low conservation of pre-miRNA sequences restrict the conventional sequence-alignment-based methods to finding only relatively close homologs. On the other hand, it has been reported that miRNA genes are more conserved in the secondary structure rather than in primary sequences.

Rating: 
Average: 5 (1 vote)

DIANA-mirExTra

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-throughput gene expression experiments are widely used to identify the role of genes involved in biological conditions of interest. MicroRNAs (miRNA) are regulatory molecules that have been functionally associated with several developmental programs and their deregulation with diverse diseases including cancer.

Rating: 
Average: 5 (1 vote)

miRNAkey

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are short abundant non-coding RNAs critical for many cellular processes. Deep sequencing (next-generation sequencing) technologies are being readily used to receive a more accurate depiction of miRNA expression profiles in living cells. This type of analysis is a key step towards improving our understanding of the complexity and mode of miRNA regulation.

Rating: 
Average: 5 (1 vote)

GraphWeb

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Deciphering heterogeneous cellular networks with embedded modules is a great challenge of current systems biology. Experimental and computational studies construct complex networks of molecules that describe various aspects of the cell such as transcriptional regulation, protein interactions and metabolism. Groups of interacting genes and proteins reflect network modules that potentially share regulatory mechanisms and relate to common function. Here, we present GraphWeb, a public web server for biological network analysis and module discovery.

Rating: 
Average: 5 (1 vote)

ChIPBase

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) represent two classes of important non-coding RNAs in eukaryotes. Although these non-coding RNAs have been implicated in organismal development and in various human diseases, surprisingly little is known about their transcriptional regulation. Recent advances in chromatin immunoprecipitation with next-generation DNA sequencing (ChIP-Seq) have provided methods of detecting transcription factor binding sites (TFBSs) with unprecedented sensitivity.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Fruitfly