You are here

Fruitfly

TROD

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

We have developed T7 RNAi Oligo Designer (TROD), a web application for RNA interference studies. TROD greatly facilitates the design of oligodeoxynucleotide sequences for the in vitro production of siRNA duplexes with T7 RNA polymerase. Given a query cDNA sequence, the program scans for appropriate target sequences based on the constraints of the T7 RNA polymerase method and published criteria for RNA interference with siRNAs.

Rating: 
Average: 5 (1 vote)

Greglist

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The double helix is a conformation that genomic DNA usually assumes; under certain conditions, however, guanine-rich DNA sequences can form a four-stranded structure, G-quadruplex, which is found to play a role in regulating gene expression. Indeed, it has been demonstrated that the G-quadruplex formed in the c-MYC promoter suppresses its transcriptional activity. Recent studies suggest that G-quadruplex motifs (GQMs) are enriched in human gene promoters.

Rating: 
Average: 5 (1 vote)

BioVLAB-MMIA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs, by regulating the expression of hundreds of target genes, play critical roles in developmental biology and the etiology of numerous diseases, including cancer. As a vast amount of microRNA expression profile data are now publicly available, the integration of microRNA expression data sets with gene expression profiles is a key research problem in life science research.

Rating: 
Average: 5 (1 vote)

miRTP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

We used a machine learning method, the nearest neighbor algorithm (NNA), to learn the relationship between miRNAs and their target proteins, generating a predictor which can then judge whether a new miRNA-target pair is true or not. We acquired 198 positive (true) miRNA-target pairs from Tarbase and the literature, and generated 4,888 negative (false) pairs through random combination. A 0/1 system and the frequencies of single nucleotides and di-nucleotides were used to encode miRNAs into vectors while various physicochemical parameters were used to encode the targets.

Rating: 
Average: 5 (1 vote)

miTRATA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

We describe miTRATA, the first web-based tool for microRNA Truncation and Tailing Analysis--the analysis of 3' modifications of microRNAs including the loss or gain of nucleotides relative to the canonical sequence. miTRATA is implemented in Python (version 3) and employs parallel processing modules to enhance its scalability when analyzing multiple small RNA (sRNA) sequencing datasets. It utilizes miRBase, currently version 21, as a source of known microRNAs for analysis. miTRATA notifies user(s) via email to download as well as visualize the results online.

Rating: 
Average: 4.5 (2 votes)

lncRInter

Submitted by ChenLiang on Sun, 09/10/2017 - 17:12

Abstract is not available.[1]

 

 

 

 

Rating: 
Average: 5 (1 vote)

PHMMTSs

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The computational identification of non-coding RNA regions on the genome is currently receiving much attention. However, it is essentially harder than gene-finding problems for protein-coding regions because non-coding RNA sequences do not have strong statistical signals. Since comparative sequence analysis is effective for non-coding RNA detection, efficient computational methods are expected for structural alignment of RNA sequences.

Rating: 
Average: 5 (1 vote)

miRNAmeConverter

Submitted by ChenLiang on Mon, 01/09/2017 - 10:23

The miRBase database is the central and official repository for miRNAs and the current release is miRBase version 21.0. Name changes in different miRBase releases cause inconsistencies in miRNA names from version to version. When working with only a small number of miRNAs the translation can be done manually. However, with large sets of miRNAs, the necessary correction of such inconsistencies becomes burdensome and error-prone.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Fruitfly